=encoding euc-jp =head1 NAME =begin original perlretut - Perl regular expressions tutorial =end original perlretut - Perl ������ɽ���Υ��塼�ȥꥢ�� =head1 DESCRIPTION =begin original This page provides a basic tutorial on understanding, creating and using regular expressions in Perl. It serves as a complement to the reference page on regular expressions L. Regular expressions are an integral part of the C, C, C and C operators and so this tutorial also overlaps with L and L. =end original ���Υڡ����Ǥ� Perl ������ɽ��(regular expressions)�����򤷡��������� ���Ѥ��뤿��δ���Ū�ʥ��塼�ȥꥢ����󶡤��ޤ��� �ܺ٤�����ɽ���Υ�ե���󥹥ڡ����Ǥ��� L �ˤ���ޤ��� ����ɽ���ϱ黻�� C��C��C��C �ΰ���ʬ�Ǥ��ꡢ �ܥ��塼�ȥꥢ��Ǥ� L �� L �Ƚ�ʣ������ʬ������ޤ��� =begin original Perl is widely renowned for excellence in text processing, and regular expressions are one of the big factors behind this fame. Perl regular expressions display an efficiency and flexibility unknown in most other computer languages. Mastering even the basics of regular expressions will allow you to manipulate text with surprising ease. =end original Perl �ϥƥ����Ƚ����Τ����ͥ�줿ƻ��Ǥ���ȹ����Τ��Ƥ��ơ� ����ɽ���Ϥ���̾�����礭����ʬ�Ǥ��� Perl ������ɽ����¾������ʬ�θ�����Τ��Ƥ��ʤ���Ψ����ͻ������ ���餫�ˤ��ޤ��� ����ɽ���δ���Ū����ʬ��ޥ��������뤳�Ȥˤ�äƤ����ä��ۤɴ�ñ�� �ƥ����Ȥ����뤳�Ȥ��Ǥ���褦�ˤʤ�Ǥ��礦�� =begin original What is a regular expression? At its most basic, a regular expression is a template that is used to determine if a string has certain characteristics. The string is most often some text, such as a line, sentence, web page, or even a whole book, but less commonly it could be some binary data as well. Suppose we want to determine if the text in variable, C<$var> contains the sequence of characters S> (blanks added for legibility). We can write in Perl =end original ����ɽ���Ȥϲ��Ǥ��礦��? �Ǥ����Ū�ʰ�̣�Ǥϡ�����ɽ���Ȥ�ʸ���󤬤�����ħ����äƤ��뤫�� ���ꤹ�뤿��˻Ȥ���ƥ�ץ졼�ȤǤ��� ʸ����ϤۤȤ�ɤξ�硢�ԡ�ʸ��web �ڡ��������뤤�������ΤΤ褦�ʤʤ�餫�� �ƥ����ȤǤ������ޤ��Ǥ�դΥХ��ʥ�ξ��⤢��ޤ��� �ѿ� C<$var> �����äƤ���ƥ����Ȥ�ʸ���¤� S> (������ɤߤ䤹���Τ�����ɲä��Ƥ��ޤ�)�� �ޤ�Ǥ��뤫�ɤ�����Ĵ�٤����Ȥ��ޤ��� Perl �Ǥϼ��Τ褦�˽񤱤ޤ�: $var =~ m/mushroom/ =begin original The value of this expression will be TRUE if C<$var> contains that sequence of characters, and FALSE otherwise. The portion enclosed in C<'E'> characters denotes the characteristic we are looking for. We use the term I for it. The process of looking to see if the pattern occurs in the string is called I, and the C<"=~"> operator along with the C tell Perl to try to match the pattern against the string. Note that the pattern is also a string, but a very special kind of one, as we will see. Patterns are in common use these days; examples are the patterns typed into a search engine to find web pages and the patterns used to list files in a directory, I, "C" or "C". In Perl, the patterns described by regular expressions are used not only to search strings, but to also extract desired parts of strings, and to do search and replace operations. =end original ���μ����ͤϡ�C<$var> ������ʸ���¤Ӥ�ޤ�Ǥ���ʤ鿿�ˡ�����ʤ���� ���ˤʤ�ޤ��� C<'E'> ʸ���ǰϤޤ줿��ʬ�ϡ�õ���Ƥ�����ħ���̣���Ƥ��ޤ��� ����� I<�ѥ�����> (pattern) �ȸƤӤޤ��� �ѥ�����ʸ�������ˤ��뤫�ɤ�����õ�������� I<�ޥå���> (matching) �� ��ӡ� C �ȶ��� C<"=~"> �黻�Ҥ��Ȥ���ȡ�Perl ��ʸ������Ф��ƥѥ������ �ޥå��󥰤��ޤ��� �ѥ������ʸ����Ǥ��������˸���줿�Ȥ��ꡢ�ȤƤ��ü�ʼ���Ǥ��뤳�Ȥ� ���դ��Ƥ��������� �ѥ�����Ϻ��������Ȥ��Ƥ��ޤ�; ���Ȥ��С������֥ڡ����򸫤Ĥ��Ф������ �������󥸥�˥����פ����ꡢ�ǥ��쥯�ȥ����Υե������ �ꥹ�ȥ��åפ��뤿��� "C" �Ȥ� "C" �Ȥ����ꤷ�ޤ��� Perl �Ǥϡ��ѥ����������ɽ���ˤ�äƵ��Ҥ��졢ʸ�����õ�����������Ǥʤ��� ʸ�����˾�ߤ���ʬ����Ф����ꡢ�������ִ������򤹤뤿��ˤ�Ȥ��ޤ��� =begin original Regular expressions have the undeserved reputation of being abstract and difficult to understand. This really stems simply because the notation used to express them tends to be terse and dense, and not because of inherent complexity. We recommend using the C regular expression modifier (described below) along with plenty of white space to make them less dense, and easier to read. Regular expressions are constructed using simple concepts like conditionals and loops and are no more difficult to understand than the corresponding C conditionals and C loops in the Perl language itself. =end original ����ɽ���ˤ����Ū�����򤹤�Τ��񤷤��Ȥ�����Ŭ�ڤʰ�̾������ޤ��� �����������ñ��ɽ���˻Ȥ��Ƥ��뵭ˡ���ʷ餫��ǻ̩�Ǥ��뤫��Ǥ��äơ� �ܼ�Ū��ʣ�����ˤ���ΤǤϤ���ޤ��� �ѥ������̩�٤򸺤餷������ɤߤ䤹�����뤿��ˡ� C ����ɽ�������� (��Ҥ��ޤ�) �ȶ��ˤ�������ζ����Ȥ����Ȥ� ����ޤ��� ����ɽ���Ͼ��ȥ롼�פΤ褦��ñ��ʥ��󥻥ץȤ�Ȥäƹ�������Ƥ��ơ� Perl ���Ȥ� C �Ǥ���Ȥ� C �Τ褦�ʤ�����б������Τ���٤� �񤷤����ȤϤ���ޤ��� =begin original This tutorial flattens the learning curve by discussing regular expression concepts, along with their notation, one at a time and with many examples. The first part of the tutorial will progress from the simplest word searches to the basic regular expression concepts. If you master the first part, you will have all the tools needed to solve about 98% of your needs. The second part of the tutorial is for those comfortable with the basics and hungry for more power tools. It discusses the more advanced regular expression operators and introduces the latest cutting-edge innovations. =end original �ܥ��塼�ȥꥢ��Ǥ�ɽ���˴ؤ��ư��٤˰�Ĥ��ġ����������¿���󤲤� ����ɽ���Υ��󥻥ץȤ������뤳�Ȥˤ�äơ��ؽ�������ʿó�����ޤ��� �ܥ��塼�ȥꥢ��κǽ����ʬ�ϴ���Ū������ɽ���Υ��󥻥ץȤΤ����ñ��� ñ�측������Ϥޤ�ޤ��� �ǽ����ʬ��ޥ���������С�ɬ�פȤ��뤳�Ȥ� 98% ���褹��Τ�ɬ�פ� �ġ�������뤳�Ȥˤʤ�Ǥ��礦�� �ܥ��塼�ȥꥢ��������ܤ���ʬ�Ϥ�궯�Ϥʥġ���Τ���˽�ʬ�ʤ�ΤǤ��� �����ǤϤ����٤�����ɽ���黻�ҤˤĤ����������ǿ��ε�ǽ��Ҳ𤷤ޤ��� =begin original A note: to save time, "regular expression" is often abbreviated as regexp or regex. Regexp is a more natural abbreviation than regex, but is harder to pronounce. The Perl pod documentation is evenly split on regexp vs regex; in Perl, there is more than one way to abbreviate it. We'll use regexp in this tutorial. =end original ����: "regular expression" �Ϥ��Ф��� regexp �Ȥ� regex ��ά����ޤ��� regexp �� regex ���⼫����ά�ΤǤ���ȯ������Τ��񤷤��Ǥ��� Perl �� pod �ɥ�����ȤǤ� regexp �� regex �����ߤ��Ƥ��ޤ�; Perl �Ǥϡ� ά���������ϰ�ĤǤϤʤ��ΤǤ��� ���Υ��塼�ȥꥢ��Ǥ� regexp ��Ȥ����Ȥˤ��ޤ�(����: ���ܸ�Ǥ� ������ɽ���פȵ����ޤ�)�� =begin original New in v5.22, L|re/'strict' mode> applies stricter rules than otherwise when compiling regular expression patterns. It can find things that, while legal, may not be what you intended. =end original L|re/'strict' mode> �� v5.22 ����ο���ǽ�ǡ�����ɽ�� �ѥ�����򥳥�ѥ��뤹��Ȥ���¾�����긷̩�ʵ�§��Ŭ�Ѥ��ޤ��� ����ˤ�ꡢͭ���ǤϤ��뤱��ɤ⡢�տޤ��Ƥ����ΤȰ㤦�����Τ�ʤ���Τ� ���Ĥ��뤳�Ȥ��Ǥ��ޤ��� =head1 Part 1: The basics (�ѡ��� 1: ����) =head2 Simple word matching (ñ���ñ��ޥå���) =begin original The simplest regexp is simply a word, or more generally, a string of characters. A regexp consisting of just a word matches any string that contains that word: =end original �Ǥ�ñ�������ɽ����ñ�ʤ�ñ�졢������Ū�ˤ�ʸ�����¤ӤǤ��� ����ɽ����ñ���������Ǥ�դ�ʸ����˥ޥå��󥰤���ñ�ʤ�ñ�줫��ʤ�ޤ�: "Hello World" =~ /World/; # matches =begin original What is this Perl statement all about? C<"Hello World"> is a simple double-quoted string. C is the regular expression and the C enclosing C tells Perl to search a string for a match. The operator C<=~> associates the string with the regexp match and produces a true value if the regexp matched, or false if the regexp did not match. In our case, C matches the second word in C<"Hello World">, so the expression is true. Expressions like this are useful in conditionals: =end original ���� Perl ��ʸ���ԤäƤ��뤳�Ȥϲ��Ǥ��礦? C<"Hello World"> ��ñ��ʡ����֥륯�����ȤǰϤޤ줿ʸ����Ǥ��� C ������ɽ���Ǥ��ꡢ C �ǰϤޤ줿 C �� Perl ���Ф��ƥޥå��󥰤Τ����ʸ����򸡺����뤳�Ȥ�ؼ����ޤ��� C<=~> �Ȥ����黻�Ҥ�����ɽ���˥ޥå��󥰤���ʸ����˷���դ���졢 ����ɽ�����ޥå��󥰤���п����ͤ����������ޥå��󥰤��ʤ���е��Ȥʤ�ޤ��� ������Ǥϡ�C �� C<"Hello World"> �������ܤ�ñ��˥ޥå��󥰤���Τǡ� ���Ͽ��Ȥʤ�ޤ��� ���Τ褦�ʼ��Ͼ��ʸ�˻Ȥ��ˤ������Ǥ�: if ("Hello World" =~ /World/) { print "It matches\n"; } else { print "It doesn't match\n"; } =begin original There are useful variations on this theme. The sense of the match can be reversed by using the C operator: =end original �����ʥХꥨ�������⤢��ޤ��� �ޥå��󥰤����ݤΰ�̣��ȿž����黻�� C ������ޤ�: if ("Hello World" !~ /World/) { print "It doesn't match\n"; } else { print "It matches\n"; } =begin original The literal string in the regexp can be replaced by a variable: =end original ����ɽ����Υ�ƥ��ʸ������ѿ����֤������뤳�Ȥ��Ǥ��ޤ�: my $greeting = "World"; if ("Hello World" =~ /$greeting/) { print "It matches\n"; } else { print "It doesn't match\n"; } =begin original If you're matching against the special default variable C<$_>, the C<$_ =~> part can be omitted: =end original �ü�ǥե�����ѿ� C<$_> ���Ф��ƥޥå��󥰤�Ԥ���硢C<$_ =~> �� ��ʬ�Ͼ�ά�Ǥ��ޤ�: $_ = "Hello World"; if (/World/) { print "It matches\n"; } else { print "It doesn't match\n"; } =begin original And finally, the C default delimiters for a match can be changed to arbitrary delimiters by putting an C<'m'> out front: =end original �Ǹ�ˡ��ޥå��󥰤Τ���� C �Υǥե���ȥǥ�ߥ��� C<'m'> �� ���֤��뤳�Ȥˤ��Ǥ�դΤ�Τˤ��뤳�Ȥ��Ǥ��ޤ�: =begin original "Hello World" =~ m!World!; # matches, delimited by '!' "Hello World" =~ m{World}; # matches, note the matching '{}' "/usr/bin/perl" =~ m"/perl"; # matches after '/usr/bin', # '/' becomes an ordinary char =end original "Hello World" =~ m!World!; # �ޥå��󥰤���; �ǥ�ߥ��� '!' "Hello World" =~ m{World}; # �ޥå��󥰤���; �ȤˤʤäƤ��� '{}' ������ "/usr/bin/perl" =~ m"/perl"; # 'usr/bin' �θ�˥ޥå��󥰤��� # '/' �����̤�ʸ���ˤʤäƤ��� =begin original C, C, and C all represent the same thing. When, I, the quote (C<'"'>) is used as a delimiter, the forward slash C<'/'> becomes an ordinary character and can be used in this regexp without trouble. =end original C, C, C �Ϥ��٤�Ʊ����Τ�ɽ���Ƥ��ޤ��� �㤨�� C<'"'> ��ǥ�ߥ��Ȥ��ƻȤä��Ȥ�������å��� C<'/'> �� �̾��ʸ���Ȥʤꡢ�ȥ�֥�ʤ�������ɽ����ǻȤ����Ȥ��Ǥ��ޤ��� =begin original Let's consider how different regexps would match C<"Hello World">: =end original �ۤʤ�����ɽ�����ɤΤ褦�� C<"Hello World"> �˥ޥå��󥰤��뤫 �ͤ��Ƥߤޤ��礦: =begin original "Hello World" =~ /world/; # doesn't match "Hello World" =~ /o W/; # matches "Hello World" =~ /oW/; # doesn't match "Hello World" =~ /World /; # doesn't match =end original "Hello World" =~ /world/; # �ޥå��󥰤��ʤ� "Hello World" =~ /o W/; # �ޥå��󥰤��� "Hello World" =~ /oW/; # �ޥå��󥰤��ʤ� "Hello World" =~ /World /; # �ޥå��󥰤��ʤ� =begin original The first regexp C doesn't match because regexps are case-sensitive. The second regexp matches because the substring S> occurs in the string S>. The space character C<' '> is treated like any other character in a regexp and is needed to match in this case. The lack of a space character is the reason the third regexp C<'oW'> doesn't match. The fourth regexp "C" doesn't match because there is a space at the end of the regexp, but not at the end of the string. The lesson here is that regexps must match a part of the string I in order for the statement to be true. =end original �ǽ������ɽ�� C �ϥޥå��󥰤��ޤ���; �ʤ��ʤ顢����ɽ������ʸ���� ��ʸ������̤��뤫��Ǥ��� �����ܤ�����ɽ���� S> �Ȥ���ʸ�������� S> �� ������ʬ������Τǥޥå��󥰤��ޤ��� ���ڡ��� C<' '> ������ɽ�������¾��ʸ����Ʊ���褦�˰���졢���ξ�� �ޥå��󥰤���Τ�ɬ�פʤ�ΤǤ��� ���ڡ������ʤ����Ȥ������ܤ�����ɽ�� C<'oW'> ���ޥå��󥰤��ʤ���ͳ�Ǥ��� �����ܤ�����ɽ���� "C" ����ɽ���������˥��ڡ������Ĥ��Ƥ���Τˡ� ʸ����������ˤϥ��ڡ������ʤ��Τǥޥå��󥰤��ޤ��� ���Υ�å���Ǥ�����ɽ���ϡ�ʸ�����Ȥʤ뤿��ˤ� I<���Τ�> ����̤�� ʸ����ΰ����Ȥ��ƥޥå��󥰤��ʤ���Фʤ�ʤ����Ȥ򼨤��ޤ����� =begin original If a regexp matches in more than one place in the string, Perl will always match at the earliest possible point in the string: =end original ����ɽ����ʸ�������ս�ʾ�˥ޥå��󥰤���ʤ�С�Perl �Ͼ��ʸ�������� �ǽ�˸�����Τ�ޥå��󥰤��褦�Ȥ��ޤ�: =begin original "Hello World" =~ /o/; # matches 'o' in 'Hello' "That hat is red" =~ /hat/; # matches 'hat' in 'That' =end original "Hello World" =~ /o/; # 'Hello' �� 'o' �˥ޥå��� "That hat is red" =~ /hat/; # 'That' ����� 'hat' �˥ޥå��� =begin original With respect to character matching, there are a few more points you need to know about. First of all, not all characters can be used "as is" in a match. Some characters, called I, are generally reserved for use in regexp notation. The metacharacters are =end original ʸ���ޥå��󥰤��Ф���ؿ��ȶ��ˡ��ΤäƤ����٤����Ĥ��Υݥ���Ȥ� ����ޤ��� �ޤ��Ϥ�ˡ����٤Ƥ�ʸ�����ޥå��󥰤ˤ����ơ֤��뤬�ޤޡפ� �Ȥ���ΤǤϤʤ��Ȥ������ȤǤ��� I<�᥿ʸ��> �ȸƤФ����Ĥ���ʸ��������ɽ���ε��Ҥ˻Ȥ������ ����Ū��ͽ�󤵤�Ƥ��ޤ��� �᥿ʸ���ˤϰʲ��Τ�Τ�����ޤ� {}[]()^$.|*+?-#\ =begin original This list is not as definitive as it may appear (or be claimed to be in other documentation). For example, C<"#"> is a metacharacter only when the C pattern modifier (described below) is used, and both C<"}"> and C<"]"> are metacharacters only when paired with opening C<"{"> or C<"["> respectively; other gotchas apply. =end original This list is not as definitive as it may appear (or be claimed to be in other documentation). �㤨�С�C<"#"> �� (��Ҥ���) C �ѥ����󽤾��Ҥ��Ȥ�줿�Ȥ��ˤΤ� �᥿ʸ���ˤʤꡢC<"}"> �� C<"]"> �Ϥ��줾�쳫�����ä��� C<"{"> �� C<"["> ���ȤǻȤ�줿�Ȥ��ˤΤߥ᥿ʸ���Ǥ�; ����¾�Υ��Ĥ�Ŭ�Ѥ���ޤ��� =begin original The significance of each of these will be explained in the rest of the tutorial, but for now, it is important only to know that a metacharacter can be matched as-is by putting a backslash before it: =end original ������ʸ���Τ��줾��ν��������ܥ��塼�ȥꥢ��λĤ����ʬ�� ��������ޤ��������ΤȤ����ϡ��᥿ʸ���ϥХå�����å���� ���֤��뤳�Ȥˤ�äƤ��Τޤޤ�ʸ���Ȥ��ƥޥå��󥰤����뤳�Ȥ��Ǥ��뤳�Ȥ� �ΤäƤ������Ȥ����פǤ�: =begin original "2+2=4" =~ /2+2/; # doesn't match, + is a metacharacter "2+2=4" =~ /2\+2/; # matches, \+ is treated like an ordinary + "The interval is [0,1)." =~ /[0,1)./ # is a syntax error! "The interval is [0,1)." =~ /\[0,1\)\./ # matches "#!/usr/bin/perl" =~ /#!\/usr\/bin\/perl/; # matches =end original "2+2=4" =~ /2+2/; # �ޥå��󥰤��ʤ�; + �ϥ᥿ʸ�� "2+2=4" =~ /2\+2/; # �ޥå��󥰤���; \+ �����̤� + �Τ褦�˰����� "The interval is [0,1)." =~ /[0,1)./ # �����ʸˡ���顼! "The interval is [0,1)." =~ /\[0,1\)\./ # �ޥå��󥰤��� "#!/usr/bin/perl" =~ /#!\/usr\/bin\/perl/; # �ޥå��󥰤��� =begin original In the last regexp, the forward slash C<'/'> is also backslashed, because it is used to delimit the regexp. This can lead to LTS (leaning toothpick syndrome), however, and it is often more readable to change delimiters. =end original �Ǹ������ɽ���Ǥϡ�����å��� C<'/'> ��ޤ��Хå�����å��夬 �Ĥ����Ƥ��ޤ�; �ʤ��ʤ顢���줬����ɽ���Υǥ�ߥ��Ȥ��ƻȤ��Ƥ��뤫��Ǥ��� ����� LTS(leaning toothpick syndrome �Ĥޤ褦���繥���ɸ���)�� ���������Ǥ������ɤߤ䤹�����뤿��˥ǥ�ߥ����ѹ����뤳�Ȥ� ���Ф��Ф���ޤ��� =begin original "#!/usr/bin/perl" =~ m!#\!/usr/bin/perl!; # easier to read =end original "#!/usr/bin/perl" =~ m!#\!/usr/bin/perl!; # ����ɤߤ䤹�� =begin original The backslash character C<'\'> is a metacharacter itself and needs to be backslashed: =end original �Хå�����å���ʸ�� C<'\'> �Ϥ��켫�Ȥ��᥿ʸ���Ǥ��ꡢ �Хå�����å����Ĥ���ɬ�פ�����ޤ�: =begin original 'C:\WIN32' =~ /C:\\WIN/; # matches =end original 'C:\WIN32' =~ /C:\\WIN/; # �ޥå��󥰤��� =begin original In situations where it doesn't make sense for a particular metacharacter to mean what it normally does, it automatically loses its metacharacter-ness and becomes an ordinary character that is to be matched literally. For example, the C<'}'> is a metacharacter only when it is the mate of a C<'{'> metacharacter. Otherwise it is treated as a literal RIGHT CURLY BRACKET. This may lead to unexpected results. L|re/'strict' mode> can catch some of these. =end original ����Υ᥿ʸ�����̾�ΰ�̣�Ȥ��ư�̣�Τʤ������Ǥϡ� ��ưŪ�˥᥿ʸ�������ʤ��ʤꡢ ��ƥ��˥ޥå��󥰤����̾��ʸ���ˤʤ�ޤ��� �㤨�С�C<'}'> �����Ȥʤ� C<'{'> �᥿ʸ����������ˤΤ� �᥿ʸ���ˤʤ�ޤ��� ����ʤ���Ф���ϥ�ƥ��� RIGHT CURLY BRACKET �Ȥ��ư����ޤ��� ��������곰�η�̤�������������⤷��ޤ��� �����ΰ����� L|re/'strict' mode> ����ª�Ǥ��ޤ��� =begin original In addition to the metacharacters, there are some ASCII characters which don't have printable character equivalents and are instead represented by I. Common examples are C<\t> for a tab, C<\n> for a newline, C<\r> for a carriage return and C<\a> for a bell (or alert). If your string is better thought of as a sequence of arbitrary bytes, the octal escape sequence, I, C<\033>, or hexadecimal escape sequence, I, C<\x1B> may be a more natural representation for your bytes. Here are some examples of escapes: =end original �᥿ʸ���˲ä����������뤳�ȤΤǤ��ʤ�ʸ���Ǥ��ä� I<���������ץ�������> �ˤ�ä�ɽ������뤤���Ĥ��� ASCII ʸ��������ޤ��� ����Ū����Ǥϡ����֤�ɽ�� C<\t>�����Ԥ�ɽ�� C<\n>��������ɽ�� C<\r>�� �٥��ɽ�� C<\a> ������ޤ��� ʸ�����Ǥ�դΥХ�����Ȥ��Ƥߤʤ��Τʤ顢C<\033> �Τ褦�� 8 �ʥ��������ץ������󥹤� C<\x1B> �Τ褦�� 16 �ʥ��������ץ������󥹤� �Х�����Τ�꼫����ɽ���Ȥʤ�ޤ��� �ʲ��ˤ�����Τϥ��������פ���Ǥ�: =begin original "1000\t2000" =~ m(0\t2) # matches "1000\n2000" =~ /0\n20/ # matches "1000\t2000" =~ /\000\t2/ # doesn't match, "0" ne "\000" "cat" =~ /\o{143}\x61\x74/ # matches in ASCII, but a weird way # to spell cat =end original "1000\t2000" =~ m(0\t2) # �ޥå��󥰤��� "1000\n2000" =~ /0\n20/ # �ޥå��󥰤��� "1000\t2000" =~ /\000\t2/ # �ޥå��󥰤��ʤ�; "0" �� "\000" �ǤϤʤ� "cat" =~ /\o{143}\x61\x74/ # ASCII �ǥޥå��󥰤��뤬��cat ���֤� # �Ѥ���ˡ =begin original If you've been around Perl a while, all this talk of escape sequences may seem familiar. Similar escape sequences are used in double-quoted strings and in fact the regexps in Perl are mostly treated as double-quoted strings. This means that variables can be used in regexps as well. Just like double-quoted strings, the values of the variables in the regexp will be substituted in before the regexp is evaluated for matching purposes. So we have: =end original ���ʤ������Ǥ� Perl �򾯤ʤ��餺�ΤäƤ���Τʤ顢���������ץ������󥹤� �դ��ƽҤ٤��ʾ�Τ��ȤϤ��Ǥˤʤ��߿�����Τ��⤷��ޤ��� Ʊ���褦�ʥ��������ץ������󥹤ϥ��֥륯�����ȤǰϤޤ줿ʸ����� �Ȥ��Ƥ��ơ����� Perl �ˤ���������ɽ���ϤۤȤ�ɤξ��ˤ����� ���֥륯�����ȤǰϤޤ줿ʸ����Τ褦�˰����ޤ��� ���Τ��Ȥ�����ɽ��������ѿ���Ȥ����Ȥ��Ǥ���Ȥ������Ȥ��̣���ޤ��� ���֥륯�����ȤǰϤޤ줿ʸ����Τ褦�ˡ�����ɽ������ѿ����ͤ� �ޥå��󥰤Τ��������ɽ����ɾ��������������֤��������Ԥ��ޤ��� �Ǥ�����: =begin original $foo = 'house'; 'housecat' =~ /$foo/; # matches 'cathouse' =~ /cat$foo/; # matches 'housecat' =~ /${foo}cat/; # matches =end original $foo = 'house'; 'housecat' =~ /$foo/; # �ޥå��󥰤��� 'cathouse' =~ /cat$foo/; # �ޥå��󥰤��� 'housecat' =~ /${foo}cat/; # �ޥå��󥰤��� =begin original So far, so good. With the knowledge above you can already perform searches with just about any literal string regexp you can dream up. Here is a I emulation of the Unix grep program: =end original ���ΤȤ�����Ĵ�Ǥ��� ����ޤǤ��μ����Ȥ�Ǥ�դΥ�ƥ��ʸ��������ɽ���˴ؤ��� ������Ԥ����Ȥ��Ǥ��ޤ��� ������� Unix �� grep �ץ������� I<����ñ���> ����Ǥ��� % cat > simple_grep #!/usr/bin/perl $regexp = shift; while (<>) { print if /$regexp/; } ^D % chmod +x simple_grep % simple_grep abba /usr/dict/words Babbage cabbage cabbages sabbath Sabbathize Sabbathizes sabbatical scabbard scabbards =begin original This program is easy to understand. C<#!/usr/bin/perl> is the standard way to invoke a perl program from the shell. S> saves the first command line argument as the regexp to be used, leaving the rest of the command line arguments to be treated as files. S) >>> loops over all the lines in all the files. For each line, S> prints the line if the regexp matches the line. In this line, both C and C use the default variable C<$_> implicitly. =end original ���Υץ����������򤹤�Τϴ�ñ�Ǥ��� C<#!/usr/bin/perl> �ϥ����뤫�� perl �ץ�������ư����ɸ��Ū����ˡ�Ǥ��� S> �Ϻǽ�Υ��ޥ�ɥ饤�����������ɽ���Ȥ��ƻȤ������ ��¸���ޤ�; �����ƻĤ�Υ��ޥ�ɥ饤������ϥե�����Ȥ��ư�������� ���Τޤޤˤ��Ƥ����ޤ��� S) >>> �롼�פϤ��٤ƤΥե�����Τ��٤ƤιԤ��Ф��� �¹Ԥ���ޤ��� �ƹԤˤ����ơ�S> �Ϥ��ιԤ�����ɽ���� �ޥå��󥰤��Ƥ���йԤ����Ƥ���Ϥ��ޤ��� ���ιԤǡ�C �� C �ϰ��ۤ˥ǥե�����ѿ� C<$_> �� ���Ѥ��ޤ��� =begin original With all of the regexps above, if the regexp matched anywhere in the string, it was considered a match. Sometimes, however, we'd like to specify I in the string the regexp should try to match. To do this, we would use the I metacharacters C<'^'> and C<'$'>. The anchor C<'^'> means match at the beginning of the string and the anchor C<'$'> means match at the end of the string, or before a newline at the end of the string. Here is how they are used: =end original ����ޤǤ�����ɽ���Ǥϡ�ʸ����Τɤ����ǥޥå��󥰤���Хޥå��󥰤����� �ߤʤ��Ƥ��ޤ����� ���������Ȥ��ˤ�ʸ����� I<�ɤ���> ����ɽ�����ޥå��󥰤���Τ��� ���ꤷ�����Ȥ�������ޤ��� �����Ԥ�����ˤϡ�I<���󥫡�> �᥿ʸ���Ǥ��� C<'^'> �� C<'$'> ��Ȥ��ޤ��� ���󥫡� C<'^'> ��ʸ�������Ƭ�ǥޥå��󥰤��뤳�Ȥ��̣�������󥫡� C<'$'> ��ʸ���������(���뤤��ʸ����������ˤ�����Ԥ���) �� �ޥå��󥰤��뤳�Ȥ��̣���ޤ��� �ʲ������󤲤ޤ�: =begin original "housekeeper" =~ /keeper/; # matches "housekeeper" =~ /^keeper/; # doesn't match "housekeeper" =~ /keeper$/; # matches "housekeeper\n" =~ /keeper$/; # matches =end original "housekeeper" =~ /keeper/; # �ޥå��󥰤��� "housekeeper" =~ /^keeper/; # �ޥå��󥰤��ʤ� "housekeeper" =~ /keeper$/; # �ޥå��󥰤��� "housekeeper\n" =~ /keeper$/; # �ޥå��󥰤��� =begin original The second regexp doesn't match because C<'^'> constrains C to match only at the beginning of the string, but C<"housekeeper"> has keeper starting in the middle. The third regexp does match, since the C<'$'> constrains C to match only at the end of the string. =end original �����ܤ�����ɽ���ϥޥå��󥰤��ޤ���; �ʤ��ʤ顢C<'^'> �� C ��ʸ����� ��Ƭ�ˤ���Ȥ��ˤΤߥޥå��󥰤��뤳�Ȥ������ޤ�����C<"housekeeper"> �� ������Ƭ�ʳ���keeper��ޤ�Ǥ��ޤ��� �����ܤ�����ɽ���ϡ�C<'$'> �� C ��ʸ����������ˤ���Ȥ��ˤΤ� �ޥå��󥰤��뤳�Ȥ������Ƥ���Τǥޥå��󥰤��ޤ��� =begin original When both C<'^'> and C<'$'> are used at the same time, the regexp has to match both the beginning and the end of the string, I, the regexp matches the whole string. Consider =end original C<'^'> �� C<'$'> ��ξ����Ʊ���˻Ȥ�줿��硢��������ɽ����ʸ�������Ƭ�� ����ξ���˥ޥå��󥰤���ɬ�פ�����ޤ�; �Ĥޤꡢ��������ɽ����ʸ�������Τ� �ޥå��󥰤���ΤǤ��� �ʲ�����ǹͤ��Ƥߤޤ��礦 =begin original "keeper" =~ /^keep$/; # doesn't match "keeper" =~ /^keeper$/; # matches "" =~ /^$/; # ^$ matches an empty string =end original "keeper" =~ /^keep$/; # �ޥå��󥰤��ʤ� "keeper" =~ /^keeper$/; # �ޥå��󥰤��� "" =~ /^$/; # ^$ �϶�ʸ����˥ޥå��󥰤��� =begin original The first regexp doesn't match because the string has more to it than C. Since the second regexp is exactly the string, it matches. Using both C<'^'> and C<'$'> in a regexp forces the complete string to match, so it gives you complete control over which strings match and which don't. Suppose you are looking for a fellow named bert, off in a string by himself: =end original �ǽ������ɽ���ϥޥå��󥰤��ޤ���; �ʤ��ʤ顢ʸ����� C �ʳ��Τ�Τ� ���äƤ��뤫��Ǥ��� �����ܤ�����ɽ�������Τ�Ʊ��ʸ����ʤΤǥޥå��󥰤��ޤ��� C<'^'> �� C<'$'> ������ɽ������ǻȤ����Ȥˤ�äơ�ʸ�������Τ� �ޥå��󥰤��뤳�Ȥ������ޤ�; ���Τ��ᡢ�ɤ�ʸ���󤬥ޥå��󥰤��ɤ� ʸ���󤬥ޥå��󥰤��ʤ������������椹�뤳�Ȥ��Ǥ��ޤ��� bert �Ȥ���̾������֤�õ���Ƥ���Ȥ��ޤ��礦: =begin original "dogbert" =~ /bert/; # matches, but not what you want =end original "dogbert" =~ /bert/; # �ޥå��󥰤���; ������˾�����ΤǤϤʤ� =begin original "dilbert" =~ /^bert/; # doesn't match, but .. "bertram" =~ /^bert/; # matches, so still not good enough =end original "dilbert" =~ /^bert/; # �ޥå��󥰤��ʤ����������� "bertram" =~ /^bert/; # �ޥå��󥰤���; �Ȥ������ȤϤޤ���ʬ�ǤϤʤ� =begin original "bertram" =~ /^bert$/; # doesn't match, good "dilbert" =~ /^bert$/; # doesn't match, good "bert" =~ /^bert$/; # matches, perfect =end original "bertram" =~ /^bert$/; # �ޥå��󥰤��ʤ�; �褷 "dilbert" =~ /^bert$/; # �ޥå��󥰤��ʤ�; �褷 "bert" =~ /^bert$/; # �ޥå��󥰤���; ���� =begin original Of course, in the case of a literal string, one could just as easily use the string comparison S> and it would be more efficient. The C<^...$> regexp really becomes useful when we add in the more powerful regexp tools below. =end original ������󡢥�ƥ��ʸ����ξ��ˤ����Ƥϡ�ʸ�������Ӥ� S> ��Ȥäƴ�ñ�˹Ԥ����Ȥ��Ǥ���������Τۤ��� ����Ψ���褤�Ǥ��� C<^...$> ����ɽ���ϰʲ��˽Ҥ٤��궯�Ϥ�����ɽ���ġ���ˤ����� �����ˤʤ�ޤ��� =head2 Using character classes (ʸ�����饹��Ȥ�) =begin original Although one can already do quite a lot with the literal string regexps above, we've only scratched the surface of regular expression technology. In this and subsequent sections we will introduce regexp concepts (and associated metacharacter notations) that will allow a regexp to represent not just a single character sequence, but a I of them. =end original ��˽Ҥ٤���ƥ��ʸ���������ɽ����ȤäƤ���¿���Τ��Ȥ��Ǥ��ޤ����� ���������ɽ���ƥ��Υ�������ɽ�̤�Ҥä��������٤˲᤮�ޤ��� ���Υ���������³�����������Ǥϡ�������ʸ����ʸ����ɽ���ΤǤϤʤ� I<ʸ���Υ��饹����> ��ɽ������ɽ���Υ��󥻥ץ� (�Ȥ���˷���դ���줿 �᥿ʸ��ɽ��)��Ҳ𤷤ޤ��� =begin original One such concept is that of a I. A character class allows a set of possible characters, rather than just a single character, to match at a particular point in a regexp. You can define your own custom character classes. These are denoted by brackets C<[...]>, with the set of characters to be possibly matched inside. Here are some examples: =end original ���Τ褦�ʥ��󥻥ץȤ� I<ʸ�����饹> �Ǥ��� ʸ�����饹������ɽ��������ξ��ˤ����ƥޥå��󥰤����ǽ���Τ���ʸ���� ����Ǥ�(ñ���ʸ���ǤϤ���ޤ���)�� �ȼ��Υ�������ʸ�����饹��������뤳�Ȥ��Ǥ��ޤ��� �����ϥ֥饱�å� C<[...]> ��ɽ�����졢�ޥå��󥰤����ǽ���Τ���ʸ���� ����Ϥ�����¦���֤���ޤ��� �ʲ��ˤ����Ĥ����󤲤ޤ�: =begin original /cat/; # matches 'cat' /[bcr]at/; # matches 'bat, 'cat', or 'rat' /item[0123456789]/; # matches 'item0' or ... or 'item9' "abc" =~ /[cab]/; # matches 'a' =end original /cat/; # 'cat' �˥ޥå��� /[bcr]at/; # 'bat, 'cat', 'rat' �˥ޥå��� /item[0123456789]/; # 'item0' �ޤ��� ... �ޤ��� 'item9' �˥ޥå��� "abc" =~ /[cab]/; # 'a' �˥ޥå��� =begin original In the last statement, even though C<'c'> is the first character in the class, C<'a'> matches because the first character position in the string is the earliest point at which the regexp can match. =end original �Ǹ��ʸ�ˤ����ơ�C<'c'> �����饹�κǽ��ʸ���Ǥ���ˤ⤫����餺 C<'a'> ���ޥå��󥰤��ޤ�; �ʤ��ʤ顢ʸ����κǽ��ʸ�����֤�����ɽ���� �ޥå��󥰤��뤳�ȤΤǤ���ǽ�ΰ��֤ˤ���ʸ��������Ǥ��� =begin original /[yY][eE][sS]/; # match 'yes' in a case-insensitive way # 'yes', 'Yes', 'YES', etc. =end original /[yY][eE][sS]/; # �羮ʸ������鷺 'yes' �˥ޥå��󥰤��� # 'yes', 'Yes', 'YES' �ʤ� =begin original This regexp displays a common task: perform a case-insensitive match. Perl provides a way of avoiding all those brackets by simply appending an C<'i'> to the end of the match. Then C can be rewritten as C. The C<'i'> stands for case-insensitive and is an example of a I of the matching operation. We will meet other modifiers later in the tutorial. =end original ��������ɽ���ϰ���Ū�ʻŻ���ɽ���Ƥ��ޤ�: �羮ʸ���ΰ㤤��̵�뤷�Ƥ� �ޥå��󥰤�Ԥ��ޤ��� Perl �Ϥ��Τ褦�ʥ֥饱�åȤ��������������󶡤��Ƥ��ޤ�; ����� �ޥå��󥰤ν�ü�� C<'i'> ��Ĥ��뤳�ȤǤ��� �������äơ�C �� C �Ƚ񤭴����뤳�Ȥ��Ǥ��ޤ��� ���� C<'i'> ���羮ʸ���ΰ㤤��̵�뤹�뤳�Ȥ��̣���Ƥ��ơ��ޥå������� I<������> (modifier)�μ���Ǥ��� �ܥ��塼�ȥꥢ��θ������¾�ν����Ҥ��ǤƤ��뤳�ȤǤ��礦�� =begin original We saw in the section above that there were ordinary characters, which represented themselves, and special characters, which needed a backslash C<'\'> to represent themselves. The same is true in a character class, but the sets of ordinary and special characters inside a character class are different than those outside a character class. The special characters for a character class are C<-]\^$> (and the pattern delimiter, whatever it is). C<']'> is special because it denotes the end of a character class. C<'$'> is special because it denotes a scalar variable. C<'\'> is special because it is used in escape sequences, just like above. Here is how the special characters C<]$\> are handled: =end original ���Υ������������Τۤ��ǡ���ʬ���Ȥ�ɽ���̾��ʸ���ȡ� ���켫�Ȥ�ɽ������ˤ� �Хå�����å��� C<'\'> ��ɬ�פ��ü�ʸ�������뤳�Ȥ򸫤Ƥ��ޤ����� Ʊ�����Ȥ�ʸ�����饹����Ǥ�����ޤ�; ��������ʸ�����饹����¦�ˤ����̾�� ʸ�����ü�ʸ���ν���ϡ�ʸ�����饹�γ�¦�ˤ����ΤȰۤʤ�ޤ��� ʸ�����饹�Τ�����ü��ʸ���� C<-]\^$> (�����(���Ǥ���)�ǥ�ߥ�)�Ǥ��� C<']'> ��ʸ�����饹�ν�ü��ɽ���Τ��ü�Ǥ��� C<'$'> �ϥ������ѿ���ɽ���Τ��ü�Ǥ��� C<'\'> �ϥ��������ץ������󥹤ǻȤ���Τ��ü�Ǥ��� �ʲ����ü�ʸ�� C<]$\> �򰷤�������Ǥ�: =begin original /[\]c]def/; # matches ']def' or 'cdef' $x = 'bcr'; /[$x]at/; # matches 'bat', 'cat', or 'rat' /[\$x]at/; # matches '$at' or 'xat' /[\\$x]at/; # matches '\at', 'bat, 'cat', or 'rat' =end original /[\]c]def/; # ']def' �ޤ��� 'cdef' �˥ޥå��� $x = 'bcr'; /[$x]at/; # 'bat', 'cat', 'rat' �˥ޥå��� /[\$x]at/; # '$at' �ޤ��� 'xat' �˥ޥå��� /[\\$x]at/; # '\at', 'bat, 'cat', 'rat' �˥ޥå��� =begin original The last two are a little tricky. In C<[\$x]>, the backslash protects the dollar sign, so the character class has two members C<'$'> and C<'x'>. In C<[\\$x]>, the backslash is protected, so C<$x> is treated as a variable and substituted in double quote fashion. =end original �Ǹ����ĤϤ���äȥȥ�å����Ǥ��� C<[\$x]> ����ǤϥХå�����å���ϥɥ뵭����ݸ�Ƥ���Τǡ� ʸ�����饹�� C<'$'> �� C<'x'> �Ȥ�����ĤΥ��Ф�����ޤ��� C<[\\$x]> �ǤϥХå���å��夬�ݸ��Ƥ���Τǡ�C<$x> ���ѿ��Ȥ��� ����졢���֥륯�����ȵ�§�˽��ä��ִ����Ԥ��ޤ��� =begin original The special character C<'-'> acts as a range operator within character classes, so that a contiguous set of characters can be written as a range. With ranges, the unwieldy C<[0123456789]> and C<[abc...xyz]> become the svelte C<[0-9]> and C<[a-z]>. Some examples are =end original �ü�ʸ�� C<'-'> ��ʸ�����饹������ϰϱ黻�ҤȤ��ƿ��񤤤ޤ�; ���Τ��ᡢ Ϣ³�����ϰϤ�ʸ�����Ĥ��ϰϤȤ��Ƶ��Ҥ��뤳�Ȥ��Ǥ��ޤ��� �ϰϤ�Ȥ����Ȥˤ�äơ�C<[0123456789]> �� C<[abc...xyz]> �Τ褦�� ���Ť餤��ΤϤ��ä���Ȥ��� C<[0-9]> �Ǥ���Ȥ� C<[a-z]> �Τ褦�� �񤭴������ޤ��� ���Ĥ����󤲤ޤ��礦 =begin original /item[0-9]/; # matches 'item0' or ... or 'item9' /[0-9bx-z]aa/; # matches '0aa', ..., '9aa', # 'baa', 'xaa', 'yaa', or 'zaa' /[0-9a-fA-F]/; # matches a hexadecimal digit /[0-9a-zA-Z_]/; # matches a "word" character, # like those in a Perl variable name =end original /item[0-9]/; # 'item0' ... 'item9' �˥ޥå��󥰤��� /[0-9bx-z]aa/; # '0aa' ... '9aa', # 'baa', 'xaa', 'yaa', 'zaa' �Τ����줫�˥ޥå��󥰤��� /[0-9a-fA-F]/; # 16 �ʿ��˥ޥå��󥰤��� /[0-9a-zA-Z_]/; # Perl ���ѿ�̾�Τ褦�� # ��ñ���ʸ���˥ޥå��󥰤��� =begin original If C<'-'> is the first or last character in a character class, it is treated as an ordinary character; C<[-ab]>, C<[ab-]> and C<[a\-b]> are all equivalent. =end original C<'-'> ��ʸ�����饹����κǽ餫�Ǹ��ʸ���Ǥ��ä���硢�̾��ʸ���Ȥ��� �����ޤ�; C<[-ab]>, C<[ab-]>, C<[a\-b]> �Ϥ��٤������Ǥ��� =begin original The special character C<'^'> in the first position of a character class denotes a I, which matches any character but those in the brackets. Both C<[...]> and C<[^...]> must match a character, or the match fails. Then =end original ʸ�����饹����Ƭ�ΰ��֤ˤ����ü�ʸ�� C<'^'> �� I<ȿžʸ�����饹> ��ɽ���� �֥饱�åȤ���ˤʤ�ʸ���˥ޥå��󥰤��ޤ��� C<[...]> �� C<[^...]> ��ξ���Ȥ⡢��Ĥ�ʸ���˥ޥå��󥰤��ͤФʤ餺�� �����Ǥʤ����ˤϥޥå��󥰤ϼ��Ԥ��ޤ��� �Ǥ����� =begin original /[^a]at/; # doesn't match 'aat' or 'at', but matches # all other 'bat', 'cat, '0at', '%at', etc. /[^0-9]/; # matches a non-numeric character /[a^]at/; # matches 'aat' or '^at'; here '^' is ordinary =end original /[^a]at/; # 'aat' �� 'at' �ˤϥޥå��󥰤��ʤ���������¾�� # 'bat', 'cat, '0at', '%at' �ʤɤˤϥޥå��󥰤��� /[^0-9]/; # �����ʳ��˥ޥå��󥰤��� /[a^]at/; # 'aat' �� '^at'�˥ޥå��󥰤���; �����Ǥ� '^' ���̾��ʸ�� =begin original Now, even C<[0-9]> can be a bother to write multiple times, so in the interest of saving keystrokes and making regexps more readable, Perl has several abbreviations for common character classes, as shown below. Since the introduction of Unicode, unless the C modifier is in effect, these character classes match more than just a few characters in the ASCII range. =end original �����ǡ�C<[0-9]> �Ǥ��������񤯤ˤ����ݤǤ�; �Ǥ����顢�������ȥ������� �����ޤ��ơ���������ɽ�������ɤߤ䤹�����뤿��˸�Ҥ���褦�� Perl �� ����Ū��ʸ�����饹��ά��ˡ����äƤ��ޤ��� Unicode ��Ƴ���Τ���ˡ�C �����Ҥ�ͭ���Ǥʤ��¤ꡢ������ʸ�����饹�� ASCII ���ϰϤǤο�ʸ������¿���ޥå��󥰤��ޤ��� =over 4 =item * =begin original C<\d> matches a digit, not just C<[0-9]> but also digits from non-roman scripts =end original C<\d> �Ͽ����˥ޥå��󥰤��ޤ�; ñ�� C<[0-9]> �����ǤϤʤ���������޻� ������ץȤ���ο�����ޥå��󥰤��ޤ� =item * =begin original C<\s> matches a whitespace character, the set C<[\ \t\r\n\f]> and others =end original C<\s> �϶���ʸ���˥ޥå��󥰤��ޤ�; C<[\ \t\r\n\f]> �䤽��¾�Τ�ΤǤ� =item * =begin original C<\w> matches a word character (alphanumeric or C<'_'>), not just C<[0-9a-zA-Z_]> but also digits and characters from non-roman scripts =end original C<\w> ��ñ���������ʸ��(�ѿ��� �� C<'_'>)�˥ޥå��󥰤��ޤ�; ñ�� C<[0-9a-zA-Z_]> �����ǤϤʤ���������޻�������ץȤ���ο�����ʸ���� �ޥå��󥰤��ޤ� =item * =begin original C<\D> is a negated C<\d>; it represents any other character than a digit, or C<[^\d]> =end original C<\D> �� C<\d> ��������Ǥ�; �����ʳ���ʸ�����Ĥޤ� C<[^\d]> ��ɽ���ޤ��� =item * =begin original C<\S> is a negated C<\s>; it represents any non-whitespace character C<[^\s]> =end original C<\S> �� C<\s> ��������Ǥ�; �����ʸ�� C<[^\s]> ��ɽ���ޤ��� =item * =begin original C<\W> is a negated C<\w>; it represents any non-word character C<[^\w]> =end original C<\W> �� C<\w> ��������Ǥ�; ñ��������ʤ�ʸ�� C<[^\w]> ��ɽ���ޤ��� =item * =begin original The period C<'.'> matches any character but C<"\n"> (unless the modifier C is in effect, as explained below). =end original �ԥꥪ�� C<'.'> �� (�ʲ��˽Ҥ٤�褦�ˡ������� C ��ͭ���Ǥʤ��¤�) C<"\n"> �ʳ���Ǥ�դ�ʸ���˥ޥå��󥰤��ޤ��� =item * =begin original C<\N>, like the period, matches any character but C<"\n">, but it does so regardless of whether the modifier C is in effect. =end original C<\N> �ϡ��ԥꥪ�ɤΤ褦�ˡ�C<"\n"> �ʳ���Ǥ�դ�ʸ���˥ޥå��󥰤��ޤ����� C �����Ҥ�ͭ�����ɤ����˴ؤ�餺�ޥå��󥰤��ޤ��� =back =begin original The C modifier, available starting in Perl 5.14, is used to restrict the matches of C<\d>, C<\s>, and C<\w> to just those in the ASCII range. It is useful to keep your program from being needlessly exposed to full Unicode (and its accompanying security considerations) when all you want is to process English-like text. (The "a" may be doubled, C, to provide even more restrictions, preventing case-insensitive matching of ASCII with non-ASCII characters; otherwise a Unicode "Kelvin Sign" would caselessly match a "k" or "K".) =end original Perl 5.14 �������Ѳ�ǽ�� C �����Ҥϡ�C<\d>, C<\s>, C<\w> �� ASCII �� �ϰϤ����¤��뤿��˻Ȥ��ޤ��� ����ϡ��Ѹ����Υƥ����Ȥ���������������λ��˥ץ���������ɬ�פ� ������ Unicode (�Ȥ���˴�Ϣ���륻�����ƥ�����θ) �ˤ��餵��ʤ��褦�� ����Τ�ͭ�ѤǤ��� ("a" ��Ťͤ� C �ˤ���Ȥ�������¤���ơ�ASCII ʸ������ʸ����ʸ���� ̵�뤷���ޥå��󥰤��� ASCII ʸ���˥ޥå��󥰤��ʤ����ޤ�; ����ʤ���С� Unicode �� "Kelvin Sign" �� "k" �� "K" �ˡ���ʸ����ʸ����̵�뤷���ޥå��󥰤� �������ޤ���) =begin original The C<\d\s\w\D\S\W> abbreviations can be used both inside and outside of bracketed character classes. Here are some in use: =end original C<\d\s\w\D\S\W> �ξ�ά��ˡ���礫�ä�ʸ�����饹����¦�Ǥ⳰¦�Ǥ� �Ȥ����Ȥ��Ǥ��ޤ��� �ʲ��Ϥ�����Ǥ�: =begin original /\d\d:\d\d:\d\d/; # matches a hh:mm:ss time format /[\d\s]/; # matches any digit or whitespace character /\w\W\w/; # matches a word char, followed by a # non-word char, followed by a word char /..rt/; # matches any two chars, followed by 'rt' /end\./; # matches 'end.' /end[.]/; # same thing, matches 'end.' =end original /\d\d:\d\d:\d\d/; # hh:mm:ss �����λ���ɽ���˥ޥå��� /[\d\s]/; # �����ޤ��϶���˥ޥå��� /\w\W\w/; # ��ñ��ʸ����³�������ñ��ʸ����³�� # ñ��ʸ���˥ޥå��� /..rt/; # 'rt' ��³��Ǥ�դ���ʸ���˥ޥå��� /end\./; # 'end.' �˥ޥå��� /end[.]/; # Ʊ������; 'end.' �˥ޥå��� =begin original Because a period is a metacharacter, it needs to be escaped to match as an ordinary period. Because, for example, C<\d> and C<\w> are sets of characters, it is incorrect to think of C<[^\d\w]> as C<[\D\W]>; in fact C<[^\d\w]> is the same as C<[^\w]>, which is the same as C<[\W]>. Think DeMorgan's laws. =end original �ԥꥪ�ɤϥ᥿ʸ���ʤΤǡ��ԥꥪ�ɤ��Τ�Τ˥ޥå��󥰤�����ˤϥ��������פ��� ɬ�פ�����ޤ��� C<\d> �� C<\w> ��ʸ���ν���ʤΤ� C<[^\d\w]> �� C<[\D\W]> �Ȥߤʤ��Τ� �ְ㤤�Ǥ�; ���¡�C<[^\d\w]> �� C<[^\w]> ��Ʊ���Ǥ��ꡢ����� C<[\W]> �� �����Ǥ��� �ɡ���륬���ˡ§��ͤ��ƤߤƤ��������� =begin original In actuality, the period and C<\d\s\w\D\S\W> abbreviations are themselves types of character classes, so the ones surrounded by brackets are just one type of character class. When we need to make a distinction, we refer to them as "bracketed character classes." =end original �¾�Ȥ��Ƥϡ��ԥꥪ�ɤ� C<\d\s\w\D\S\W> �ξ�ά���Ϥ��켫�Ȥ����� ʸ�����饹�ʤΤǡ��������礫�ä��ǰϤ����Τ�ñ�ˤ�����ʸ�����饹�Ǥ��� �������̤���ɬ�פ�������ˤϡ������ϡ��礫�ä�ʸ�����饹�� (bracketed character classes)�ȸƤӤޤ��� =begin original An anchor useful in basic regexps is the I C<\b>. This matches a boundary between a word character and a non-word character C<\w\W> or C<\W\w>: =end original ����Ū������ɽ���������ʥ��󥫡��� I<�쥢�󥫡�> (word anchor)�� C<\b> ������ޤ��� �����ñ���������ʸ����ñ��������ʤ�ʸ���δ� C<\w\W> �� C<\W\w> �� �����˥ޥå��󥰤��ޤ�: =begin original $x = "Housecat catenates house and cat"; $x =~ /cat/; # matches cat in 'housecat' $x =~ /\bcat/; # matches cat in 'catenates' $x =~ /cat\b/; # matches cat in 'housecat' $x =~ /\bcat\b/; # matches 'cat' at end of string =end original $x = "Housecat catenates house and cat"; $x =~ /cat/; # 'housecat' �� cat �˥ޥå��� $x =~ /\bcat/; # 'catenates' �� cat �˥ޥå��� $x =~ /cat\b/; # 'housecat' �� cat �˥ޥå��� $x =~ /\bcat\b/; # ʸ����ν�ü��'cat'�˥ޥå��� =begin original Note in the last example, the end of the string is considered a word boundary. =end original �Ǹ��������դ��Ƥ�������; ʸ����ν�ü��ñ�춭���Ȥ���ǧ������Ƥ��ޤ��� =begin original For natural language processing (so that, for example, apostrophes are included in words), use instead C<\b{wb}> =end original ������������Τ��� (���Τ���ˡ��㤨�С����ݥ��ȥ��ե���ñ��˴ޤ��) �ʤ顢 ����� C<\b{wb}> ��Ȥ��ޤ� "don't" =~ / .+? \b{wb} /x; # matches the whole string =begin original You might wonder why C<'.'> matches everything but C<"\n"> - why not every character? The reason is that often one is matching against lines and would like to ignore the newline characters. For instance, while the string C<"\n"> represents one line, we would like to think of it as empty. Then =end original C<'.'> �� C<"\n"> �ʳ���Ǥ�դ�ʸ���˥ޥå��󥰤��뤳�Ȥ˵���򴶤��뤫�� ����ޤ��� - �ʤ����٤Ƥ�ʸ���ǤϤʤ��ΤǤ��礦��? ���������ϥޥå��󥰤����Ф��йԤ��Ф��ƹԤ�졢����ʸ���� ̵�뤷��������Ǥ��� ���Ȥ��С�ʸ���� C<"\n"> ����Ԥ�ɽ���Ƥ����Ȥ��ơ��������ιԤȤ��� �ߤʤ������Ǥ��礦�� �Ǥ����� =begin original "" =~ /^$/; # matches "\n" =~ /^$/; # matches, $ anchors before "\n" =end original "" =~ /^$/; # �ޥå��� "\n" =~ /^$/; # �ޥå���; "\n" ��̵�뤵��� =begin original "" =~ /./; # doesn't match; it needs a char "" =~ /^.$/; # doesn't match; it needs a char "\n" =~ /^.$/; # doesn't match; it needs a char other than "\n" "a" =~ /^.$/; # matches "a\n" =~ /^.$/; # matches, $ anchors before "\n" =end original "" =~ /./; # �ޥå��󥰤��ʤ�; ����饯����ɬ�� "" =~ /^.$/; # �ޥå��󥰤��ʤ�; ����饯����ɬ�� "\n" =~ /^.$/; # �ޥå��󥰤��ʤ�; "\n" �ʳ��Υ���饯����ɬ�� "a" =~ /^.$/; # �ޥå��󥰤��� "a\n" =~ /^.$/; # �ޥå��󥰤���; "\n" ��̵�뤵��� =begin original This behavior is convenient, because we usually want to ignore newlines when we count and match characters in a line. Sometimes, however, we want to keep track of newlines. We might even want C<'^'> and C<'$'> to anchor at the beginning and end of lines within the string, rather than just the beginning and end of the string. Perl allows us to choose between ignoring and paying attention to newlines by using the C and C modifiers. C and C stand for single line and multi-line and they determine whether a string is to be treated as one continuous string, or as a set of lines. The two modifiers affect two aspects of how the regexp is interpreted: 1) how the C<'.'> character class is defined, and 2) where the anchors C<'^'> and C<'$'> are able to match. Here are the four possible combinations: =end original �̾�Ϥ���Ԥˤ�����ʸ�����������ޥå��󥰤����ꤹ��Ȥ��ˤϲ��Ԥ� ̵�뤷�����Τǡ�����ư��������Ǥ��� ���������Ȥ��Ȥ��Ʋ��Ԥ���¸�������Ȥ�������ޤ��� C<'^'> �� C<'$'> ��ʸ�������Ƭ�������ǤϤʤ��Ԥ���Ƭ���������Ф��륢�󥫡��� �������Ȥ�������Ǥ��礦�� Perl �� C �����Ҥ� C �����Ҥ�Ȥ����Ȥˤ�äƲ��Ԥ�̵�뤷���� ��θ�����ꤹ�뤳�Ȥ����򤹤뤳�Ȥ�����Ƥ��ޤ��� C �� C �Ϥ��줾��ñ���(single line)��ʣ����(multi-line)���̣���� ʸ�����Ϣ³����ʸ���Ȥ��Ƥߤʤ����Ԥν���Ȥ��Ƥߤʤ�������ꤷ�ޤ��� �������Ĥν����Ҥ�����ɽ�����ɤΤ褦�˲�ᤵ��뤫�˴ؤ�����Ĥαƶ��� �ڤܤ��ޤ�: 1) C<'.'> ʸ�����饹���ɤΤ褦���������뤫 2) ���󥫡� C<'^'> �� C<'$'> ���ɤ��˥ޥå��󥰤Ǥ��뤫�Ǥ��� �ͤĤβ�ǽ���Ȥ߹�碌������ޤ�: =over 4 =item * =begin original no modifiers: Default behavior. C<'.'> matches any character except C<"\n">. C<'^'> matches only at the beginning of the string and C<'$'> matches only at the end or before a newline at the end. =end original �����Ҥʤ�: �ǥե���Ȥ�ư��Ǥ��� C<'.'> �� C<"\n"> �ʳ���Ǥ�դ�ʸ���˥ޥå��󥰤��ޤ��� C<'^'> ��ʸ�������Ƭ�ˤΤߥޥå��󥰤���C<'$'> ��ʸ����������⤷���� ��ü�ˤ�����Ԥ�ľ���ˤΤߥޥå��󥰤��ޤ��� =item * =begin original s modifier (C): Treat string as a single long line. C<'.'> matches any character, even C<"\n">. C<'^'> matches only at the beginning of the string and C<'$'> matches only at the end or before a newline at the end. =end original s ������ (C): ʸ������Ĥ�Ĺ���ԤȤ��Ƥߤʤ��ޤ��� C<'.'> �� C<"\n"> ��ޤ᤿Ǥ�դ�ʸ���˥ޥå��󥰤��ޤ��� C<'^'> ��ʸ�������Ƭ�ˤΤߥޥå��󥰤���C<'$'> ��ʸ����������⤷���� ��ü�ˤ�����Ԥ�ľ���ˤΤߥޥå��󥰤��ޤ��� =item * =begin original m modifier (C): Treat string as a set of multiple lines. C<'.'> matches any character except C<"\n">. C<'^'> and C<'$'> are able to match at the start or end of I line within the string. =end original m ������ (C): ʸ�����ʣ���Ԥν���Ȥ��Ƥߤʤ��ޤ��� C<'.'> �� C<"\n"> �ʳ���Ǥ�դ�ʸ���˥ޥå��󥰤��ޤ��� C<'^'> �� C<'$'> �Ϥ��줾��ʸ�������Ǥ�դιԤ���Ƭ�������˥ޥå��󥰤��ޤ��� =item * =begin original both s and m modifiers (C): Treat string as a single long line, but detect multiple lines. C<'.'> matches any character, even C<"\n">. C<'^'> and C<'$'>, however, are able to match at the start or end of I line within the string. =end original s �����Ҥ� m �����Ҥ�ξ�� (C): ʸ�����ñ���Ĺ���ԤȤ��Ƥߤʤ��ޤ����� ʣ���Ԥ򸡽Ф��ޤ��� C<'.'> �� C<"\n"> ��ޤ᤿Ǥ�դ�ʸ���˥ޥå��󥰤��ޤ��� ��������C<'^'> �� C<'$'> �Ϥ��줾��ʸ�������Ǥ�դιԤ���Ƭ�������� �ޥå��󥰤��뤳�Ȥ���ǽ�Ǥ��� =back =begin original Here are examples of C and C in action: =end original �ʲ��ϥ����������� C �� C ����Ǥ�: $x = "There once was a girl\nWho programmed in Perl\n"; =begin original $x =~ /^Who/; # doesn't match, "Who" not at start of string $x =~ /^Who/s; # doesn't match, "Who" not at start of string $x =~ /^Who/m; # matches, "Who" at start of second line $x =~ /^Who/sm; # matches, "Who" at start of second line =end original $x =~ /^Who/; # �ޥå��󥰤��ʤ�; "Who" ��ʸ�������Ƭ�ˤϤʤ� $x =~ /^Who/s; # �ޥå��󥰤��ʤ�; "Who" ��ʸ�������Ƭ�ˤϤʤ� $x =~ /^Who/m; # �ޥå��󥰤���; "Who" ������ܤ���Ƭ�ˤ��� $x =~ /^Who/sm; # �ޥå��󥰤���; "Who" ������ܤ���Ƭ�ˤ��� =begin original $x =~ /girl.Who/; # doesn't match, "." doesn't match "\n" $x =~ /girl.Who/s; # matches, "." matches "\n" $x =~ /girl.Who/m; # doesn't match, "." doesn't match "\n" $x =~ /girl.Who/sm; # matches, "." matches "\n" =end original $x =~ /girl.Who/; # �ޥå��󥰤��ʤ�; "." �� "\n" �˥ޥå��󥰤��ʤ� $x =~ /girl.Who/s; # �ޥå��󥰤���; "." �� "\n"�˥ޥå��󥰤��� $x =~ /girl.Who/m; # �ޥå��󥰤��ʤ�; "." �� "\n" �˥ޥå��󥰤��ʤ� $x =~ /girl.Who/sm; # �ޥå��󥰤���; "." �� "\n"�˥ޥå��󥰤��� =begin original Most of the time, the default behavior is what is wanted, but C and C are occasionally very useful. If C is being used, the start of the string can still be matched with C<\A> and the end of the string can still be matched with the anchors C<\Z> (matches both the end and the newline before, like C<'$'>), and C<\z> (matches only the end): =end original �ۤȤ�ɤξ�硢�ǥե���Ȥ�ư�˾��Ǥ����ΤǤ�����C �� C �ϤȤƤ������ʤ�ΤǤ��� �⤷ C ��ȤäƤ���Τʤ顢ʸ�������Ƭ�� C<\A> �� �ޥå��󥰤����뤳�Ȥ��Ǥ���ʸ����������ϥ��󥫡� C<\Z> (C<'$'> �� Ʊ���褦�ˡ������������ˤ�����Ԥ�ľ���˥ޥå��󥰤��ޤ�) �� C<\z> (�����ˤΤߥޥå���)�ǥޥå��󥰤����뤳�Ȥ��Ǥ��ޤ�: =begin original $x =~ /^Who/m; # matches, "Who" at start of second line $x =~ /\AWho/m; # doesn't match, "Who" is not at start of string =end original $x =~ /^Who/m; # �ޥå��󥰤���; "Who" ������ܤ���Ƭ�ˤ��� $x =~ /\AWho/m; # �ޥå��󥰤��ʤ�; "Who" ��ʸ�������Ƭ�ˤϤʤ� =begin original $x =~ /girl$/m; # matches, "girl" at end of first line $x =~ /girl\Z/m; # doesn't match, "girl" is not at end of string =end original $x =~ /girl$/m; # �ޥå��󥰤���; "girl" �ϰ���ܤ������ˤ��� $x =~ /girl\Z/m; # �ޥå��󥰤��ʤ�; "girl" ��ʸ����������ˤϤʤ� =begin original $x =~ /Perl\Z/m; # matches, "Perl" is at newline before end $x =~ /Perl\z/m; # doesn't match, "Perl" is not at end of string =end original $x =~ /Perl\Z/m; # �ޥå��󥰤���; "Perl" ��������ľ���ˤ�����Ԥ����ˤ��� $x =~ /Perl\z/m; # �ޥå��󥰤��ʤ�; "Perl" ��ʸ����������ˤϤʤ� =begin original We now know how to create choices among classes of characters in a regexp. What about choices among words or character strings? Such choices are described in the next section. =end original ����ɽ�����ʸ�����饹��ɤΤ褦�����򤹤뤫��ؤӤޤ����� ñ���ʸ���¤Ӥ˴ؤ��������? ��������ϼ��Υ��������ǽҤ٤ޤ��� =head2 Matching this or that (����䤳���˥ޥå��󥰤���) =begin original Sometimes we would like our regexp to be able to match different possible words or character strings. This is accomplished by using the I metacharacter C<'|'>. To match C or C, we form the regexp C. As before, Perl will try to match the regexp at the earliest possible point in the string. At each character position, Perl will first try to match the first alternative, C. If C doesn't match, Perl will then try the next alternative, C. If C doesn't match either, then the match fails and Perl moves to the next position in the string. Some examples: =end original ����ɽ����ۤʤ�ñ���ʸ���¤Ӥ˥ޥå��󥰤��������ȹͤ��뤳�Ȥ�����Ǥ��礦�� ����� I<����> �᥿ʸ�� C<'|'> �ˤ�äƹԤ����Ȥ��Ǥ��ޤ��� C �ޤ��� C �˥ޥå��󥰤�����ˤϡ�����ɽ���� C �Τ褦�ˤ��ޤ��� �����Ҥ٤��̤ꡢPerl��ʸ����β�ǽ�ʸ¤�Ǥ��ᤤ���֤ǥޥå��󥰤� �Ԥ����Ȥ��ޤ��� ���줾���ʸ�����֤ǡ�Perl�Ϥޤ��Ϥ���˺ǽ������Ǥ��� C �� �ޥå��󥰤����뤳�Ȥ��ߤޤ��� �⤷ C ���ޥå��󥰤��ʤ���С�Perl �ϼ��������Ǥ��� C �� ��ޤ��� C ��ޤ��ޥå��󥰤��ʤ���С��ޥå��󥰤ϼ��Ԥ���Perl��ʸ����μ��� ���֤˰�ư���ޤ��� ���Ĥ����󤲤ޤ��礦: =begin original "cats and dogs" =~ /cat|dog|bird/; # matches "cat" "cats and dogs" =~ /dog|cat|bird/; # matches "cat" =end original "cats and dogs" =~ /cat|dog|bird/; # "cat" �˥ޥå��� "cats and dogs" =~ /dog|cat|bird/; # "cat" �˥ޥå��� =begin original Even though C is the first alternative in the second regexp, C is able to match earlier in the string. =end original �����ܤ�����ɽ���ˤ����ƺǽ������褬 C �Ǥ���ˤ⤫����餺�� C ��ʸ����Ǻǽ�˸����ޥå����оݤǤ��� =begin original "cats" =~ /c|ca|cat|cats/; # matches "c" "cats" =~ /cats|cat|ca|c/; # matches "cats" =end original "cats" =~ /c|ca|cat|cats/; # "c" �˥ޥå��� "cats" =~ /cats|cat|ca|c/; # "cats" �˥ޥå��� =begin original Here, all the alternatives match at the first string position, so the first alternative is the one that matches. If some of the alternatives are truncations of the others, put the longest ones first to give them a chance to match. =end original �����ǤϤ��٤Ƥ�����褬�ǽ�ΰ��֤ǥޥå��󥰤���Τǡ��ǽ������褬 �ޥå����оݤȤʤ�ޤ��� �⤷����������褬¾��������̤᤿��ΤǤ���ʤ�С��ޥå��󥰤Υ���󥹤� Ϳ���뤿��˺Ǥ�Ĺ����Τ�ǽ���֤��ޤ��� =begin original "cab" =~ /a|b|c/ # matches "c" # /a|b|c/ == /[abc]/ =end original "cab" =~ /a|b|c/ # "c" �˥ޥå��� # /a|b|c/ == /[abc]/ =begin original The last example points out that character classes are like alternations of characters. At a given character position, the first alternative that allows the regexp match to succeed will be the one that matches. =end original ���κǸ�����ʸ�����饹��ʸ��������˻��Ƥ��뤳�Ȥ�ɽ���Ƥ��ޤ��� Ϳ����줿ʸ�����֤ǡ�����ɽ���Υޥå��󥰤����������뤿��� �ǽ�������ϥޥå��󥰤����ĤȤʤ�ޤ��� =head2 Grouping things and hierarchical matching (���롼�ײ��ȳ���Ū�ޥå���) =begin original Alternation allows a regexp to choose among alternatives, but by itself it is unsatisfying. The reason is that each alternative is a whole regexp, but sometime we want alternatives for just part of a regexp. For instance, suppose we want to search for housecats or housekeepers. The regexp C fits the bill, but is inefficient because we had to type C twice. It would be nice to have parts of the regexp be constant, like C, and some parts have alternatives, like C. =end original ���������ɽ�����������椫�����ӽФ����Ȥ�����ޤ��������켫�Ȥ� ��­�Ǥ����ΤǤϤ���ޤ��� ������ͳ�ϡ�������������ɽ�����ΤǤʤ���Фʤ�ʤ��Τˡ�����ɽ���� �������������򤷤����Ȥ������뤫��Ǥ��� ���Ȥ��С�housecats �� housekeepers �򸡺��������Ȥ��ޤ��礦�� C �Ȥ�������ɽ���Ϥ��줬�Ǥ��ޤ�; ��������C �� ��󥿥��פ��ʤ���Фʤ�ʤ��ΤǸ�Ψ���褯����ޤ��� ����ɽ���ΰ���ʬ�� C �Τ褦������ˤǤ��ơ������ư����� C �Τ褦����������Ĥ褦�ˤǤ���Ф褤�ΤǤ��� =begin original The I metacharacters C<()> solve this problem. Grouping allows parts of a regexp to be treated as a single unit. Parts of a regexp are grouped by enclosing them in parentheses. Thus we could solve the C by forming the regexp as C. The regexp C means match C followed by either C or C. Some more examples are =end original I<���롼�ײ�> �᥿ʸ�� C<()> �Ϥ���������褷�ޤ��� ���롼�ײ�������ɽ���ΰ���ʬ���ĤΥ�˥åȤȤ��ư������Ȥ�����ޤ��� ��������ɽ���ΰ����ϥ��å��ˤ�äưϤޤ�뤳�Ȥǥ��롼�ײ�����ޤ��� �������äơ�C ������ɽ���� C �� ���뤳�Ȥˤ�äƲ�褹�뤳�Ȥ��Ǥ��ޤ��� ����ɽ�� C �ϡ�C �� C ����³���� C �˥ޥå��󥰤��뤳�Ȥ��̣���ޤ��� ���Ĥ����󤲤ޤ��礦 =begin original /(a|b)b/; # matches 'ab' or 'bb' /(ac|b)b/; # matches 'acb' or 'bb' /(^a|b)c/; # matches 'ac' at start of string or 'bc' anywhere /(a|[bc])d/; # matches 'ad', 'bd', or 'cd' =end original /(a|b)b/; # 'ab' �ޤ��� 'bb' �˥ޥå��� /(ac|b)b/; # 'acb' �ޤ��� 'bb' �˥ޥå��� /(^a|b)c/; # ʸ�������Ƭ�ˤ��� 'ac' ��Ǥ�դξ���'bc'�˥ޥå��� /(a|[bc])d/; # 'ad', 'bd', 'cd' �˥ޥå��� =begin original /house(cat|)/; # matches either 'housecat' or 'house' /house(cat(s|)|)/; # matches either 'housecats' or 'housecat' or # 'house'. Note groups can be nested. =end original /house(cat|)/; # 'housecat' �� 'house' �˥ޥå��� /house(cat(s|)|)/; # 'housecats' �� 'housecat' �� 'house' �Τ����줫�� # �ޥå��󥰡����롼�פ��ͥ��ȤǤ��뤳�Ȥ����� =begin original /(19|20|)\d\d/; # match years 19xx, 20xx, or the Y2K problem, xx "20" =~ /(19|20|)\d\d/; # matches the null alternative '()\d\d', # because '20\d\d' can't match =end original /(19|20|)\d\d/; # ǯ��ɽ��19xx, 20xx �� 2000 ǯ�������� xx �˥ޥå��� "20" =~ /(19|20|)\d\d/; # ��������� '()\d\d' �˥ޥå��� # '20\d\d' �ϥޥå��󥰤Ǥ��ʤ����� =begin original Alternations behave the same way in groups as out of them: at a given string position, the leftmost alternative that allows the regexp to match is taken. So in the last example at the first string position, C<"20"> matches the second alternative, but there is nothing left over to match the next two digits C<\d\d>. So Perl moves on to the next alternative, which is the null alternative and that works, since C<"20"> is two digits. =end original ����ϥ��롼�פ���Ǥ⤽�γ�¦��Ʊ���褦�˿��񤤤ޤ�: ʸ�����Ϳ����줿 ���ǡ�����ɽ�����ޥå��󥰤���Ǥ⺸�ˤ�������褬���Ф�ޤ��� �Ǥ����顢�Ǹ����ǤϺǽ��ʸ������֤������ܤ������ C<"20"> �� �ޥå��󥰤��ޤ������Ĥ����Ĥο��� C<\d\d> �˥ޥå��󥰤����Τ� �ĤäƤ��ޤ��� ���Τ��ᡢPerl�ϼ��������ؤȰܤꡢC<"20"> ����Ĥο����ʤΤǶ��������� ���ޤ������ޤ��� =begin original The process of trying one alternative, seeing if it matches, and moving on to the next alternative, while going back in the string from where the previous alternative was tried, if it doesn't, is called I. The term "backtracking" comes from the idea that matching a regexp is like a walk in the woods. Successfully matching a regexp is like arriving at a destination. There are many possible trailheads, one for each string position, and each one is tried in order, left to right. From each trailhead there may be many paths, some of which get you there, and some which are dead ends. When you walk along a trail and hit a dead end, you have to backtrack along the trail to an earlier point to try another trail. If you hit your destination, you stop immediately and forget about trying all the other trails. You are persistent, and only if you have tried all the trails from all the trailheads and not arrived at your destination, do you declare failure. To be concrete, here is a step-by-step analysis of what Perl does when it tries to match the regexp =end original �������������ޥå��󥰤���Ф��������Ǽ��������ذܤꡢ �ޥå��󥰤��ʤ����ʸ����ΰ�������������������롢 �Ȥ������� I<�Хå��ȥ�å���> (backtracking)�ȸƤФ�ޤ��� '�Хå��ȥ�å���'�Ȥ���ñ�������ɽ���Υޥå��󥰤�������λ���� ���Ƥ��뤳�Ȥ��餭�Ƥ��ޤ��� ����ɽ���Υޥå��󥰤��������뤳�Ȥ���Ū�Ϥˤ��ɤ��夯���ȤǤ��� ¿���ε��������ꡢʸ����γư��֤ΤҤȤĤǺ����鱦�ؤȽ�����Ƥ� ��İ�Ļ�ޤ��� ���줾��ε��������¿�����̤�ƻ�����ꡢ�ɤ줫�Ϥ��ʤ����ܻؤ����� ¾�Τɤ줫�ϹԤ��ߤޤ�ˤʤäƤ��ޤ��� �⤤�Ƥ��ƹԤ��ߤޤ�������ä��顢���ʤ��Ϥ���褿ƻ������(backtrack)���� �̤�ƻ���Ƥߤʤ���Фʤ�ޤ��� ��Ū�Ϥ��夤���ʤ顢¨�¤˻ߤޤä�¾��ƻ��˺��Ƥ��ޤ��ޤ��� ���ʤ���Ǵ�궯���Τǡ����٤Ƥε������餹�٤Ƥ��̤�ƻ���Ƥ���Ǥ� ��Ū�Ϥ��夫�ʤ���С����Ԥ�������ޤ��� ����Ū�ˡ�Perl ������ɽ���Υޥå��󥰤��Ƥ���Ȥ��˹ԤäƤ��뤳�Ȥ� ���ƥåפ��ɤä��������ޤ��礦 "abcde" =~ /(abd|abc)(df|d|de)/; =over 4 =item Z<>0. Start with the first letter in the string C<'a'>. (Z<>0. ʸ����κǽ��ʸ�� C<'a'> ����Ϥ�ޤ���) E =item Z<>1. Try the first alternative in the first group C<'abd'>. (Z<>1. �ǽ�Υ��롼�פ���κǽ������� C<'abd'> ���ޤ���) E =item Z<>2. Match C<'a'> followed by C<'b'>. So far so good. (Z<>2. C<'a'> �Ȥ����³�� C<'b'> �˥ޥå��󥰤��ޤ����褵�����Ǥ���) E =item Z<>3. C<'d'> in the regexp doesn't match C<'c'> in the string - a dead end. So backtrack two characters and pick the second alternative in the first group C<'abc'>. (����ɽ����� C<'d'> ��ʸ������� C<'c'> �˥ޥå��󥰤��ޤ��� - �Ԥ��ߤޤ�Ǥ������Τ��ᡢ��ʸ������ꤷ�ƺǽ�Υ��롼�פ������ܤ������Ǥ��� C<'abc'> ����Ф��ޤ���) E =item Z<>4. Match C<'a'> followed by C<'b'> followed by C<'c'>. We are on a roll and have satisfied the first group. Set C<$1> to C<'abc'>. (C<'a'>, C<'b'>, C<'c'> ��³���ƥޥå��󥰤��ޤ��������Ǻǽ�Υ��롼�פ���­����ޤ�����C<$1> �� C<'abc'> �򥻥åȤ��ޤ���) E =item Z<>5 Move on to the second group and pick the first alternative C<'df'>. (�����ܤΥ��롼�פذ�ư���ơ��ǽ�������Ǥ��� C<'df'> ����Ф��ޤ���) E =item Z<>6 Match the C<'d'>. (C<'d'> �˥ޥå��󥰤��ޤ���) E =item Z<>7. C<'f'> in the regexp doesn't match C<'e'> in the string, so a dead end. Backtrack one character and pick the second alternative in the second group C<'d'>. (����ɽ����� C<'f'> ��ʸ������� C<'e'> �˥ޥå��󥰤��ޤ���; �Ԥ��ߤޤ�Ǥ�����ʸ������ꤷ�������ܤΥ��롼�פ������ܤ������ C<'d'> ����Ф��ޤ���) E =item Z<>8. C<'d'> matches. The second grouping is satisfied, so set C<$2> to C<'d'>. (C<'d'> �˥ޥå��󥰤��ޤ��������ܤΥ��롼�פ���­���줿�Τǡ�C<$2> �� C<'d'> �򥻥åȤ��ޤ���) E =item Z<>9. We are at the end of the regexp, so we are done! We have matched C<'abcd'> out of the string C<"abcde">. (����ɽ���ν�ü��ã���ޤ���; ����ǽ����Ǥ�!ʸ���� C<"abcde"> ���Ф��� C<'abcd'> ���ޥå��󥰤��ޤ�����) =back =begin original There are a couple of things to note about this analysis. First, the third alternative in the second group C<'de'> also allows a match, but we stopped before we got to it - at a given character position, leftmost wins. Second, we were able to get a match at the first character position of the string C<'a'>. If there were no matches at the first position, Perl would move to the second character position C<'b'> and attempt the match all over again. Only when all possible paths at all possible character positions have been exhausted does Perl give up and declare S> to be false. =end original ����Ĵ���˴ؤ������դ��٤������󡢻�����ޤ��� ���ˡ������ܤΥ��롼�פλ����ܤ������ C<'de'> ��ޤ��ޥå��󥰤��ޤ����� �����˹Ԥ�������ߤ��ޤ��� - Ϳ����줿ʸ���ΰ��֤ǡ��Ǥ⺸�Τ�Τ� ͥ�褵��뤫��Ǥ��� ����ˡ�ʸ����κǽ��ʸ���� C<'a'> �Ǥ��ä��Τǥޥå��󥰤Ǥ��ޤ����� �⤷�ǽ�ΰ��֤ǥޥå��󥰤��������ʤ���С�Perl �������ܤˤ���ʸ�� C<'b'> �ؤȰ�ư����Ʊ�����Ȥ򷫤��֤��ޤ��� ���٤Ƥβ�ǽ��ʸ�����֤ǡ����٤Ƥβ�ǽ��ƻ�ڤ��Ԥ����Ȥ��ˤΤ� Perl �� �ޥå��󥰤򤢤���ᡢ S> �����Ԥ�����������ޤ��� =begin original Even with all this work, regexp matching happens remarkably fast. To speed things up, Perl compiles the regexp into a compact sequence of opcodes that can often fit inside a processor cache. When the code is executed, these opcodes can then run at full throttle and search very quickly. =end original ��������Τ��Ȥ�ԤäƤ���������ɽ���Υޥå��󥰤���Ω�ä�®����ΤǤ��� ����®�٤���夵���뤿��ˡ�Perl ������ɽ���򥳥�ѥ��ȤǤ��Ф��� �ץ����å��Υ���å����Ǽ�ޤ�褦�ʥ��ڥ����ɤ��¤Ӥؤ��Ѵ����ޤ��� ���Υ����ɤ��¹Ԥ��줿�Ȥ��������Υ��ڥ����ɤϥե륹���åȥ�� ���뤳�Ȥ��Ǥ������ˤ��Ф䤯�������ޤ��� =head2 Extracting matches (�ޥå��󥰤�����Τ���Ф�) =begin original The grouping metacharacters C<()> also serve another completely different function: they allow the extraction of the parts of a string that matched. This is very useful to find out what matched and for text processing in general. For each grouping, the part that matched inside goes into the special variables C<$1>, C<$2>, I. They can be used just as ordinary variables: =end original ���롼�ײ��᥿ʸ�� C<()> �Ϥޤ����ޤä����ۤʤ��̤ε�ǽ��ͭ���Ƥ��ޤ�: �ޥå��󥰤���ʸ����ΰ���ʬ��Ÿ�����뤳�Ȥ��Ǥ���ΤǤ��� ����ϰ���Ū�ˡ��ޥå��󥰤�����Τ򸫤Ĥ��Ф����ꡢ�ƥ����Ƚ����Τ���� ���������ʤ�ΤǤ��� ���줾��Υ��롼�ײ����Ф��ơ��ޥå��󥰤�����ʬ���ü��ѿ� C<$1>, C<$2> �ʤɤ� ��Ǽ����ޤ��� �������ѿ����̾���ѿ���Ʊ���褦�˻Ȥ����Ȥ��Ǥ��ޤ�: # extract hours, minutes, seconds if ($time =~ /(\d\d):(\d\d):(\d\d)/) { # match hh:mm:ss format $hours = $1; $minutes = $2; $seconds = $3; } =begin original Now, we know that in scalar context, S> returns a true or false value. In list context, however, it returns the list of matched values C<($1,$2,$3)>. So we could write the code more compactly as =end original ������Ǥϥ����饳��ƥ����ȤʤΤǡ� S> �Ͽ��������ͤ��֤��ޤ��� �ꥹ�ȥ���ƥ����ȤǤϡ��ޥå��󥰤����ͤΥꥹ�� C<($1,$2,$3)> ���֤��ޤ��� �Ǥ����顢�����ɤ��ꥳ��ѥ��Ȥ� # extract hours, minutes, seconds ($hours, $minutes, $second) = ($time =~ /(\d\d):(\d\d):(\d\d)/); =begin original If the groupings in a regexp are nested, C<$1> gets the group with the leftmost opening parenthesis, C<$2> the next opening parenthesis, I. Here is a regexp with nested groups: =end original ����ɽ����Υ��롼�ײ����ͥ��Ȥ��Ƥ�����硢C<$1> �ϺǤ⺸�ˤ��� �������ä��ˤ�äƥ��롼�ײ�����Ƥ����Τ��ꡢC<$2> �� ���γ������ä��ˤ���Τ���ĤȤʤäƤ����ޤ��� ���줬�ͥ��Ȥ������롼�פ�������ɽ���Ǥ�: /(ab(cd|ef)((gi)|j))/; 1 2 34 =begin original If this regexp matches, C<$1> contains a string starting with C<'ab'>, C<$2> is either set to C<'cd'> or C<'ef'>, C<$3> equals either C<'gi'> or C<'j'>, and C<$4> is either set to C<'gi'>, just like C<$3>, or it remains undefined. =end original ��������ɽ�����ޥå��󥰤���ȡ�C<$1> �� C<'ab'> �ǻϤޤ�ʸ�������ꡢ C<$2> �� C<'cd'> �� C<'ef'> �����ꡢC<$3> �� C<'gi'> �� C<'j'> �����ꡢ C<$4> �� C<$3> ��Ʊ�ͤ� C<'gi'> �����뤫��̤����ΤޤޤǤ��� =begin original For convenience, Perl sets C<$+> to the string held by the highest numbered C<$1>, C<$2>,... that got assigned (and, somewhat related, C<$^N> to the value of the C<$1>, C<$2>,... most-recently assigned; I the C<$1>, C<$2>,... associated with the rightmost closing parenthesis used in the match). =end original �����Τ��ᡢPerl �� C<$+> �� C<$1>, C<$2> �ʤɤ��������줿�ֹ��դ��ѿ��� �Ǥ���ͤ��礭�ʤ�Τ򥻥åȤ��ޤ�(�����ơ�C<$^N> �ˤϺǤ�Ƕ��������줿 C<$1>, C<$2> �ʤɤ��ͤ����åȤ���ޤ�; �Ĥޤꡢ�ޥå��󥰤ˤ����ƻȤ�줿 �Ĥ����å�����ǺǤⱦ�ˤ����Τ˷���դ���줿��ΤǤ�)�� =head2 Backreferences (��������) =begin original Closely associated with the matching variables C<$1>, C<$2>, ... are the I C<\g1>, C<\g2>,... Backreferences are simply matching variables that can be used I a regexp. This is a really nice feature; what matches later in a regexp is made to depend on what matched earlier in the regexp. Suppose we wanted to look for doubled words in a text, like "the the". The following regexp finds all 3-letter doubles with a space in between: =end original �ޥå����ѿ� C<$1>, C<$2> �Ĥ�̩�ܤ˷���դ���줿��Τϡ� I<��������> (backreferences) C<\g1>, C<\g2> �ĤǤ��� �������Ȥ�����ɽ���� I<��¦> �ǻȤ����ȤΤǤ���ޥå����ѿ��Ǥ��� ����ϼ¤��ɤ���ǽ�Ǥ�; ����ɽ������Ǹ�ǥޥå��󥰤����Τ���������� �ޥå��󥰤��Ƥ�����Τ˰�¸�����뤳�Ȥ��Ǥ��ޤ��� "the the" �Τ褦�˷����֤����줿ñ���ƥ����Ȥ��椫��õ�������Ȥ��ޤ��礦�� �ʲ�������ɽ���ϥ��ڡ�����ʬ����줿��ʸ���ν�ʣñ��򸫤Ĥ��Ф��ޤ�: /\b(\w\w\w)\s\g1\b/; =begin original The grouping assigns a value to C<\g1>, so that the same 3-letter sequence is used for both parts. =end original ���롼�ײ����ͤ� C<\g1> �˥��åȤ���Τǡ�Ʊ����ʸ�����¤Ӥ�ξ���Υѡ��Ĥ� �Ȥ��ޤ��� =begin original A similar task is to find words consisting of two identical parts: =end original �����褦�ʺ�ȤȤ��Ƥϡ�Ʊ����ʬ�� 2 �󷫤��֤����ñ��� õ���Ȥ�����ΤǤ�: % simple_grep '^(\w\w\w\w|\w\w\w|\w\w|\w)\g1$' /usr/dict/words beriberi booboo coco mama murmur papa =begin original The regexp has a single grouping which considers 4-letter combinations, then 3-letter combinations, I., and uses C<\g1> to look for a repeat. Although C<$1> and C<\g1> represent the same thing, care should be taken to use matched variables C<$1>, C<$2>,... only I a regexp and backreferences C<\g1>, C<\g2>,... only I a regexp; not doing so may lead to surprising and unsatisfactory results. =end original ��������ɽ���ϻ�ʸ�����Ȥ߹�碌����ʸ�����Ȥ߹�碌�ʤɤ򰷤�������Ĥ� ���롼�ײ�����äƤ��ޤ�; �����ơ�C<\g1> �Ϸ����֤���õ���ޤ��� C<$1> �� C<\g1> ��Ʊ����Τ�ɽ�����Ƥ���ˤ⤫����餺���ޥå����ѿ� C<$1>, C<$2> �Ĥ�����ɽ���� I<��¦> �Τߤ��Ѥ��� �������� C<\g1>, C<\g2> �Ĥ�����ɽ���� I<��¦> �ǤΤ߻Ȥ��褦�ˤ��٤��Ǥ�; �������ʤ��ȶä��褦������­�ʷ�̤򾷤����⤷��ޤ��� =head2 Relative backreferences (���и�������) =begin original Counting the opening parentheses to get the correct number for a backreference is error-prone as soon as there is more than one capturing group. A more convenient technique became available with Perl 5.10: relative backreferences. To refer to the immediately preceding capture group one now may write C<\g{-1}>, the next but last is available via C<\g{-2}>, and so on. =end original �������Ȥ��������ֹ�����뤿��˳������ä��������Ȥ������Ȥϡ���ª ���롼�פ�ʣ���ˤʤ�Ȥ����˴ְ㤤�򵯤��������ˤʤ�ޤ��� ��������ʥƥ��˥å��Ǥ������и������Ȥ� Perl 5.10 �����Ѳ�ǽ�Ǥ��� ľ������ª���롼�פ򻲾Ȥ��뤿��ˤ� C<\g{-1}> �Ƚ񤭡����μ����� C<\g{-2}>���ʤɤȤʤ�ޤ��� =begin original Another good reason in addition to readability and maintainability for using relative backreferences is illustrated by the following example, where a simple pattern for matching peculiar strings is used: =end original ���и������Ȥ�Ȥ����ȤΡ����������ݼ����˲ä����褤��ͳ�ϡ��ʲ��Ρ� �����ʸ�����ޥå��󥰤��뤿���ñ��ʥѥ����󤬻Ȥ��Ƥ�����Ǽ����ޤ�: $a99a = '([a-z])(\d)\g2\g1'; # matches a11a, g22g, x33x, etc. =begin original Now that we have this pattern stored as a handy string, we might feel tempted to use it as a part of some other pattern: =end original �����ǡ����Υѥ������������ʸ����Ȥ��ƻ��Ĥ��Ȥˤʤä��Τǡ� �����¾�Υѥ�����ΰ����Ȥ��ƻȤ������Ȼפ����⤷��ޤ���: $line = "code=e99e"; if ($line =~ /^(\w+)=$a99a$/){ # unexpected behavior! print "$1 is valid\n"; } else { print "bad line: '$line'\n"; } =begin original But this doesn't match, at least not the way one might expect. Only after inserting the interpolated C<$a99a> and looking at the resulting full text of the regexp is it obvious that the backreferences have backfired. The subexpression C<(\w+)> has snatched number 1 and demoted the groups in C<$a99a> by one rank. This can be avoided by using relative backreferences: =end original ����������ϥޥå��󥰤��ޤ���; ���ʤ��Ȥ�ͽ�ۤ����̤�ˤϡ� �ѿ�Ÿ�����줿 C<$a99a> ������������Ǥ�������̤Ȥʤ� ����ɽ���Υƥ����Ȥ򸫤�ȡ��������Ȥ��ո��̤Ȥʤ�Τ����餫�Ǥ��� ��ʬ�� C<(\w+)> �� 1 �֤�å�äƤ��ޤ���C<$a99a> �Υ��롼�פ� 1 �ijʲ����ˤʤ�ޤ��� ��������и������Ȥ�Ȥ����ȤDz���Ǥ��ޤ�: $a99a = '([a-z])(\d)\g{-1}\g{-2}'; # safe for being interpolated =head2 Named backreferences (̾���դ���������) =begin original Perl 5.10 also introduced named capture groups and named backreferences. To attach a name to a capturing group, you write either C<< (?...) >> or C<< (?'name'...) >>. The backreference may then be written as C<\g{name}>. It is permissible to attach the same name to more than one group, but then only the leftmost one of the eponymous set can be referenced. Outside of the pattern a named capture group is accessible through the C<%+> hash. =end original Perl 5.10 �Ǥ�̾���դ����롼�פ�̾���դ��������Ȥ�Ƴ������ޤ����� ��ª���롼�פ�̾�����դ��뤿��ˡ�C<< (?...) >> �ޤ��� C<< (?'name'...) >> �Ƚ񤱤ޤ��� �������Ȥ� C<\g{name}> �Ƚ񤱤ޤ��� ʣ���Υ��롼�פ�Ʊ��̾�����դ��뤳�ȤϽ���ޤ��������ֺ��Τ�Τ����� ���Ȳ�ǽ�Ǥ��� �ѥ�����γ�¦�Ǥϡ�̾���դ���ª���롼�פ� C<%+> �ϥå�����̤��� ���������Ǥ��ޤ��� =begin original Assuming that we have to match calendar dates which may be given in one of the three formats yyyy-mm-dd, mm/dd/yyyy or dd.mm.yyyy, we can write three suitable patterns where we use C<'d'>, C<'m'> and C<'y'> respectively as the names of the groups capturing the pertaining components of a date. The matching operation combines the three patterns as alternatives: =end original yyyy-mm-dd, mm/dd/yyyy, dd.mm.yyyy �� 3 �Ĥη����Τɤ줫 1 �Ĥ� Ϳ���������դȥޥå��󥰤��ʤ���Фʤ�ʤ��Ȳ��ꤹ��ȡ� C<'d'>, C<'m'>, C<'y'> �򤽤줾�����դ����Ǥ���ª���륰�롼�פ�̾���Ȥ��� �Ȥäơ����Ĥ�Ŭ�礹��ѥ������񤱤ޤ��� �ޥå������� 3 �ĤΥѥ����������Ȥ��Ʒ�礷�ޤ�: $fmt1 = '(?\d\d\d\d)-(?\d\d)-(?\d\d)'; $fmt2 = '(?\d\d)/(?\d\d)/(?\d\d\d\d)'; $fmt3 = '(?\d\d)\.(?\d\d)\.(?\d\d\d\d)'; for my $d (qw(2006-10-21 15.01.2007 10/31/2005)) { if ( $d =~ m{$fmt1|$fmt2|$fmt3} ){ print "day=$+{d} month=$+{m} year=$+{y}\n"; } } =begin original If any of the alternatives matches, the hash C<%+> is bound to contain the three key-value pairs. =end original �⤷¾�Υޥå��󥰤�������ϡ��ϥå��� C<%+> �� 3 �ĤΥ���-�ͤ��Ȥ� �ޤޤ�뤳�Ȥˤʤ�ޤ��� =head2 Alternative capture group numbering (������ª���롼���ֹ��դ�) =begin original Yet another capturing group numbering technique (also as from Perl 5.10) deals with the problem of referring to groups within a set of alternatives. Consider a pattern for matching a time of the day, civil or military style: =end original �⤦��ĤΥ��롼�פ��ֹ��դ��ε��� (����� Perl 5.10 ����Ǥ�) �ϡ� ����ν������ˤ��륰�롼�פ򻲾Ȥ�������򰷤��ޤ��� ̱�ַ����ȷ������λ���˥ޥå��󥰤���ѥ������ͤ��ޤ�: if ( $time =~ /(\d\d|\d):(\d\d)|(\d\d)(\d\d)/ ){ # process hour and minute } =begin original Processing the results requires an additional if statement to determine whether C<$1> and C<$2> or C<$3> and C<$4> contain the goodies. It would be easier if we could use group numbers 1 and 2 in second alternative as well, and this is exactly what the parenthesized construct C<(?|...)>, set around an alternative achieves. Here is an extended version of the previous pattern: =end original ��̤ν����ˤϡ�C<$1> �� C<$2>���ޤ��� C<$3> �� C<$4> ��ͭ�Ѥʤ�Τ� �ޤޤ��Ƥ��뤫����ꤹ�뤿����ɲä� if ʸ��ɬ�פǤ��� 2 ���ܤ������ˤ⥰�롼���ֹ� 1 �� 2 ��Ĥ�����Ф���ñ�ˤʤ�ޤ�; ���줬�ޤ��ˡ������μ���ˤ��ä���Ĥ�����¤ C<(?|...)> �� ��̣�����ΤǤ��� ����ϰ����Υѥ�����γ�ĥ�ǤǤ�: if($time =~ /(?|(\d\d|\d):(\d\d)|(\d\d)(\d\d))\s+([A-Z][A-Z][A-Z])/){ print "hour=$1 minute=$2 zone=$3\n"; } =begin original Within the alternative numbering group, group numbers start at the same position for each alternative. After the group, numbering continues with one higher than the maximum reached across all the alternatives. =end original �����ֹ��դ����롼�פ���ǡ����롼���ֹ�Ϥ��줾���������Ф��� Ʊ�����֤���Ϥޤ�ޤ��� ���Υ��롼�פθ塢�ֹ��դ������Ƥ��������Ǥκ����ͤ� 1 ��ä����ͤ��� ³�Ԥ��ޤ��� =head2 Position information (���־���) =begin original In addition to what was matched, Perl also provides the positions of what was matched as contents of the C<@-> and C<@+> arrays. C<$-[0]> is the position of the start of the entire match and C<$+[0]> is the position of the end. Similarly, C<$-[n]> is the position of the start of the C<$n> match and C<$+[n]> is the position of the end. If C<$n> is undefined, so are C<$-[n]> and C<$+[n]>. Then this code =end original �ޥå��󥰤�����Τ˲ä��ơ�Perl �Ǥϥޥå��󥰤�����Τΰ��֤� C<@-> �� C<@+> �Ȥ����������Ȥˤ�ä��󶡤��ޤ��� C<$-[0]> �ϥޥå������Τγ��ϰ��֤ǡ�C<$+[0]> �ϥޥå������Τ� ��λ���֤Ǥ��� Ʊ�ͤˡ� C<$-[n]> �� C<$n> �γ��ϰ��֤Ǥ��� C<$+[n]> �Ϥ��ν�λ���֤Ǥ��� C<$n> ��̤����Ǥ��ä����ˤϡ�C<$-[n]> �� C<$+[n]> ��ޤ�̤����Ǥ��� ���äƤ��Υ����ɤ� $x = "Mmm...donut, thought Homer"; $x =~ /^(Mmm|Yech)\.\.\.(donut|peas)/; # matches foreach $exp (1..$#-) { print "Match $exp: '${$exp}' at position ($-[$exp],$+[$exp])\n"; } =begin original prints =end original �ʲ��ν��Ϥ�Ԥ��ޤ� Match 1: 'Mmm' at position (0,3) Match 2: 'donut' at position (6,11) =begin original Even if there are no groupings in a regexp, it is still possible to find out what exactly matched in a string. If you use them, Perl will set C<$`> to the part of the string before the match, will set C<$&> to the part of the string that matched, and will set C<'$'> to the part of the string after the match. An example: =end original ���롼�ײ�������ɽ���ǻȤäƤ��ʤ��ä��Ȥ��Ƥ⡢ʸ�������Ǽºݤ� �ޥå��󥰤�����Τ򸫤Ĥ��Ф����Ȥ���ǽ�Ǥ��� ����ɽ����Ȥä��Ȥ��� Perl �� C<$`> ��ʸ����Υޥå��󥰤�����ʬ���������ʬ�� ���åȤ��� C<$&> �ˤϥޥå��󥰤�����ʬ�򥻥åȤ��������� C<'$'> �ˤ� �ޥå��󥰤�����ʬ�������ʬ�򥻥åȤ��ޤ��� ��: $x = "the cat caught the mouse"; $x =~ /cat/; # $` = 'the ', $& = 'cat', $' = ' caught the mouse' $x =~ /the/; # $` = '', $& = 'the', $' = ' cat caught the mouse' =begin original In the second match, C<$`> equals C<''> because the regexp matched at the first character position in the string and stopped; it never saw the second "the". =end original �����ܤΥޥå��󥰤Ǥϡ�C<$`> �� C<''> �Ȥʤ�ޤ�; �ʤ��ʤ顢����ɽ����ʸ����κǽ��ʸ�����֤ǥޥå��󥰤��ƻߤޤäƤ��뤫��ǡ� �����ܤ� "the" ��褷�Ƹ��ʤ�����ʤΤǤ��� =begin original If your code is to run on Perl versions earlier than 5.20, it is worthwhile to note that using C<$`> and C<'$'> slows down regexp matching quite a bit, while C<$&> slows it down to a lesser extent, because if they are used in one regexp in a program, they are generated for I regexps in the program. So if raw performance is a goal of your application, they should be avoided. If you need to extract the corresponding substrings, use C<@-> and C<@+> instead: =end original �����ɤ� 5.20 ������ΥС������� Perl ��ư�����Ƥ����硢 C<$`> �� C<'$'> ��Ȥ����Ȥ�����ɽ���ޥå��󥰤���Ω�ä��٤������뤳�Ȥ� ���դ�����ͤ�����ޤ�; ���� C<$&> ���٤��ʤ븶���Ǥ�; �ʤ��ʤ顢�ץ��������������ɽ���Ǥ�����Ȥä��ʤ�Хץ���������� I<���٤�> ������ɽ�����Ф��Ƥ���餬��������뤫��Ǥ��� �Ǥ����顢���Υѥե����ޥ󥹤����ʤ��κ�륢�ץꥱ�������Υ������ ����ʤ�С��������ӽ����٤��Ǥ��� �⤷�б�������ʬʸ�����Ÿ����ɬ�פʤ顢����� C<@-> ��C<@+> �� �Ȥ��ޤ��礦: =begin original $` is the same as substr( $x, 0, $-[0] ) $& is the same as substr( $x, $-[0], $+[0]-$-[0] ) $' is the same as substr( $x, $+[0] ) =end original $` �� substr( $x, 0, $-[0] ) ��Ʊ���Ǥ� $& �� substr( $x, $-[0], $+[0]-$-[0] ) ��Ʊ���Ǥ� $' �� substr( $x, $+[0] ) ��Ʊ���Ǥ� =begin original As of Perl 5.10, the C<${^PREMATCH}>, C<${^MATCH}> and C<${^POSTMATCH}> variables may be used. These are only set if the C

modifier is present. Consequently they do not penalize the rest of the program. In Perl 5.20, C<${^PREMATCH}>, C<${^MATCH}> and C<${^POSTMATCH}> are available whether the C

has been used or not (the modifier is ignored), and C<$`>, C<'$'> and C<$&> do not cause any speed difference. =end original Perl 5.10 ���顢C<${^PREMATCH}>, C<${^MATCH}>, C<${^POSTMATCH}> �ѿ��� �Ȥ��ޤ��� ������ C

�����Ҥ�����Ȥ��ˤΤ����ꤵ��ޤ��� ���äơ������ϥץ������λĤ����ʬ�Ǥ������פˤϤʤ�ޤ��� Perl 5.20 �Ǥϡ�C<${^PREMATCH}>, C<${^MATCH}>, C<${^POSTMATCH}> �� C

�� ���äƤ�ʤ��Ƥ�Ȥ���褦�ˤʤ�(���ν����Ҥ�̵�뤵��ޤ�)��C<$`>, C<'$'>, C<$&> ��ȤäƤ�®�٤��Ѥ��ʤ��ʤ�ޤ����� =head2 Non-capturing groupings (��ª���ʤ����롼�ײ�) =begin original A group that is required to bundle a set of alternatives may or may not be useful as a capturing group. If it isn't, it just creates a superfluous addition to the set of available capture group values, inside as well as outside the regexp. Non-capturing groupings, denoted by C<(?:regexp)>, still allow the regexp to be treated as a single unit, but don't establish a capturing group at the same time. Both capturing and non-capturing groupings are allowed to co-exist in the same regexp. Because there is no extraction, non-capturing groupings are faster than capturing groupings. Non-capturing groupings are also handy for choosing exactly which parts of a regexp are to be extracted to matching variables: =end original �����ν����ޤȤ�뤿���ɬ�פʥ��롼�פϡ���ª���롼�פȤ��� ͭ�Ѥʾ��⤢��ޤ�����ͭ�ѤǤʤ����⤢��ޤ��� ͭ�ѤǤʤ����ϡ����������ɽ�����⳰�ǡ�̵�̤���ª���롼���ͤ� ��뤳�Ȥˤʤ�ޤ��� ����ª���롼�ײ��� C<(?:regexp)> �Τ褦��ɽ������ regexp ���Ĥ� ��˥åȤΤ褦�˰������Ȥ��Ǥ���褦�ˤ��ޤ�����Ʊ������ª���롼�פ� �������뤳�ȤϤ��ޤ��� ��ª���륰�롼�ײ�����ª���ʤ����롼�ײ���ξ����Ʊ������ɽ���� ��Ƕ�¸���뤳�Ȥ��Ǥ��ޤ��� ��ʬʸ�����ȴ���Ф��򤷤ʤ��Τǡ�����ª���롼�ײ�����ª���� ���롼�ײ������®�Ǥ��� ����ª���롼�ײ��ϥޥå����ѿ���Ȥä���Ф�������ɽ������ʬ�� ���򤹤�Τ������Ǥ�: # match a number, $1-$4 are set, but we only want $1 /([+-]?\ *(\d+(\.\d*)?|\.\d+)([eE][+-]?\d+)?)/; # match a number faster , only $1 is set /([+-]?\ *(?:\d+(?:\.\d*)?|\.\d+)(?:[eE][+-]?\d+)?)/; # match a number, get $1 = whole number, $2 = exponent /([+-]?\ *(?:\d+(?:\.\d*)?|\.\d+)(?:[eE]([+-]?\d+))?)/; =begin original Non-capturing groupings are also useful for removing nuisance elements gathered from a split operation where parentheses are required for some reason: =end original ����ª���롼�ײ��ϡ��ʤ�餫����ͳ�Ǥ��ä���ɬ�פʤȤ����ǡ�split �� �⤿�餹�����������Ǥ�������Τˤ������Ǥ�: $x = '12aba34ba5'; @num = split /(a|b)+/, $x; # @num = ('12','a','34','a','5') @num = split /(?:a|b)+/, $x; # @num = ('12','34','5') =begin original In Perl 5.22 and later, all groups within a regexp can be set to non-capturing by using the new C flag: =end original Perl 5.22 �ʹߤǤϡ�����ɽ��������ƤΥ��롼�פϡ������� C �ե饰��Ȥ����Ȥ�����ª�ˤʤ�ޤ�: "hello" =~ /(hi|hello)/n; # $1 is not set! =begin original See L for more information. =end original ����ʤ����ˤĤ��Ƥ� L �򻲾Ȥ��Ƥ��������� =head2 Matching repetitions (�ޥå��󥰤η����֤�) =begin original The examples in the previous section display an annoying weakness. We were only matching 3-letter words, or chunks of words of 4 letters or less. We'd like to be able to match words or, more generally, strings of any length, without writing out tedious alternatives like C<\w\w\w\w|\w\w\w|\w\w|\w>. =end original ��Υ�����������Ǥϡ�ʢΩ���������������餫�ˤʤ�ޤ����� ��ʸ����ñ�줫����ʸ���ʲ���ʸ���β��ˤ����ޥå��󥰤��Ƥ��ޤ����� C<\w\w\w\w|\w\w\w|\w\w|\w> �Τ褦��Ĺ���餷�������񤯤��Ȥʤ���Ǥ�դ� Ĺ����ñ��������Ū�ˤϡ�ʸ����˥ޥå��󥰤��������ΤǤ��� =begin original This is exactly the problem the I metacharacters C<'?'>, C<'*'>, C<'+'>, and C<{}> were created for. They allow us to delimit the number of repeats for a portion of a regexp we consider to be a match. Quantifiers are put immediately after the character, character class, or grouping that we want to specify. They have the following meanings: =end original ����ϡ�C<'?'>, C<'*'>, C<'+'>, C<{}> �Ȥ��ä� I<�̻����> (quantifier) �᥿ʸ��������븵�Ȥʤä�����Ǥ��� �����ϥޥå��󥰤��������ȹͤ��Ƥ�������ɽ���ΰ���ʬ�η����֤������ ����Ǥ��ޤ��� �̻���ҤϷ����֤�����ꤷ����ʸ����ʸ�����饹���ޤ��ϥ��롼�פ�ľ��� �֤��ޤ��� �����ϰʲ��Τ褦�ʰ�̣������ޤ�: =over 4 =item * =begin original C means: match C<'a'> 1 or 0 times =end original C ��: C<'a'> �ޤ��϶�ʸ����˥ޥå��󥰤��ޤ��� =item * =begin original C means: match C<'a'> 0 or more times, I, any number of times =end original C ��: C<'a'> �Υ�����ʾ�η����֤��˥ޥå��󥰤��ޤ��� =item * =begin original C means: match C<'a'> 1 or more times, I, at least once =end original C ��: C<'a'> �ΰ��ʾ�η����֤��˥ޥå��󥰤��ޤ��� =item * =begin original C means: match at least C times, but not more than C times. =end original C ��: C ��ʾ� C ��ʲ��η����֤��˥ޥå��󥰤��ޤ��� =item * =begin original C means: match at least C or more times =end original C ��: C ��ʾ�η����֤��˥ޥå��󥰤��ޤ��� =item * =begin original C means: match exactly C times =end original C ��: C ��η����֤��˥ޥå��󥰤��ޤ��� =back =begin original Here are some examples: =end original �ʲ��ˤ����Ĥ����󤲤ޤ�: =begin original /[a-z]+\s+\d*/; # match a lowercase word, at least one space, and # any number of digits /(\w+)\s+\g1/; # match doubled words of arbitrary length /y(es)?/i; # matches 'y', 'Y', or a case-insensitive 'yes' $year =~ /^\d{2,4}$/; # make sure year is at least 2 but not more # than 4 digits $year =~ /^\d{4}$|^\d{2}$/; # better match; throw out 3-digit dates $year =~ /^\d{2}(\d{2})?$/; # same thing written differently. # However, this captures the last two # digits in $1 and the other does not. =end original /[a-z]+\s+\d*/; # ��ʸ����ñ�졢���Ĥ��ζ��򡢤����³��Ǥ�դ�Ĺ���� # �����˥ޥå��� /(\w+)\s+\g1/; # Ǥ�դ�Ĺ����ñ��ν�ʣ�˥ޥå��� /y(es)?/i; # 'y', 'Y', �ޤ����羮ʸ����̵�뤷�� 'yes' �˥ޥå��� $year =~ /^\d{2,4}$/; # ǯ�����ʤ��Ȥ�2�夢�뤬����Ǥ�4��ˤʤ�褦�� # ���� $year =~ /^\d{4}|\d{2}$/; # ��ä��ɤ�; 3���Ϥ��� $year =~ /^\d{2}(\d{2})?$/;# Ʊ�����Ȥΰ㤦���������������������Ǥ� # $1 ���������롣 % simple_grep '^(\w+)\g1$' /usr/dict/words # isn't this easier? beriberi booboo coco mama murmur papa =begin original For all of these quantifiers, Perl will try to match as much of the string as possible, while still allowing the regexp to succeed. Thus with C, Perl will first try to match the regexp with the C<'a'> present; if that fails, Perl will try to match the regexp without the C<'a'> present. For the quantifier C<'*'>, we get the following: =end original �������̻���ҤΤ��٤Ƥǡ�Perl ������ɽ���Υޥå��󥰤���������Τ�����ϰϤ� ��ǽ�ʸ¤��ʸ�����ޥå��󥰤����褦�Ȥ��ޤ��� �������äơ�C �����ä��Ȥ���Perl �Ϻǽ�� C<'a'> �������ΤȤ��� ����ɽ���Υޥå��󥰤��ߤޤ�; �⤷���줬���Ԥ����顢Perl �� C<'a'> �� �ʤ���ΤȤ�������ɽ���Υޥå��󥰤��ߤޤ��� �̻���� C<'*'> �˴ؤ��ơ��ʲ��Τ褦�ˤʤ�ޤ�: $x = "the cat in the hat"; $x =~ /^(.*)(cat)(.*)$/; # matches, # $1 = 'the ' # $2 = 'cat' # $3 = ' in the hat' =begin original Which is what we might expect, the match finds the only C in the string and locks onto it. Consider, however, this regexp: =end original ����Ϥ����餯���Ԥ�����Τǡ�ʸ�������� C �����򸫤Ĥ��Ф��� �ޥå��󥰤��ޤ��� ��������������ǹͤ��Ƥߤޤ��礦: $x =~ /^(.*)(at)(.*)$/; # matches, # $1 = 'the cat in the h' # $2 = 'at' # $3 = '' (0 characters match) =begin original One might initially guess that Perl would find the C in C and stop there, but that wouldn't give the longest possible string to the first quantifier C<.*>. Instead, the first quantifier C<.*> grabs as much of the string as possible while still having the regexp match. In this example, that means having the C sequence with the final C in the string. The other important principle illustrated here is that, when there are two or more elements in a regexp, the I quantifier, if there is one, gets to grab as much of the string as possible, leaving the rest of the regexp to fight over scraps. Thus in our example, the first quantifier C<.*> grabs most of the string, while the second quantifier C<.*> gets the empty string. Quantifiers that grab as much of the string as possible are called I or I quantifiers. =end original Perl �� C �� C �򸫤Ĥ��ơ������ǥ��ȥåפ���������ȹͤ���ͤ� ���뤫�⤷��ޤ��󤬡�����ǤϺǽ���̻���� C<.*> �˲�ǽ�ʸ¤��Ĺ�� ʸ�����Ϳ���ƤϤ��ޤ��� ��������ˡ��ǽ���̻���� C<.*> ������ɽ�����ޥå��󥰤����ϰϤDz�ǽ�ʸ¤�� Ĺ��ʸ�����Ĥ��ߤȤ�ޤ��� ������Ǥ� C ��ʸ����κǸ�� C �ˤʤ�Ȥ������Ȥ��̣���ޤ��� ���������餫�ˤʤ�⤦��Ĥν��פʵ�§����İʾ�����Ǥ�����ɽ������� ����Ȥ��ˤϡ�I<�Ǥ⺸�ˤ���> �̻���Ҥ���ǽ�ʸ¤��Ĺ����ʸ����� �Ĥ��ߤȤꡢ����ɽ���λĤ����ʬ���ɤ��Ǥ��뤫�����äƤ����Ȥ�����ΤǤ��� �������äƤ�����Ǥϡ��ǽ���̻���� C<.*> ��ʸ����ΤۤȤ�ɤ�Ĥ��ߡ� �����ܤ��̻���� C<.*> �϶�ʸ�����Ĥ��ߤޤ��� ��ǽ�ʸ¤��ʸ�����Ĥ��ߤȤ��̻���Ҥ� I<��Ĺ�ޥå���> �Ȥ� I<����> (greedy) �Ǥ���ȸƤФ�ޤ��� =begin original When a regexp can match a string in several different ways, we can use the principles above to predict which way the regexp will match: =end original ����ɽ�������Ĥ��ΰۤʤ�ƻ�ڤ�ʸ����˥ޥå��󥰤��뤳�Ȥ���ǽ�ʤȤ��� ����ɽ�����ɤΤ褦�˥ޥå��󥰤��뤫��ͽ¬���뤿��˰ʲ���ˡ§�� �Ȥ����Ȥ��Ǥ��ޤ�: =over 4 =item * =begin original Principle 0: Taken as a whole, any regexp will be matched at the earliest possible position in the string. =end original ˡ§ 0: ���Τǡ�Ǥ�դ�����ɽ����ʸ������β�ǽ�ʸ¤���Ƭ�˶ᤤ���� �ޥå��󥰤��롣 =item * =begin original Principle 1: In an alternation C, the leftmost alternative that allows a match for the whole regexp will be the one used. =end original ˡ§ 1: ���� C ����ǡ�����ɽ�����Τ��ޥå��󥰤�����ǺǤ⺸�� ����褬�Ȥ��롣 =item * =begin original Principle 2: The maximal matching quantifiers C<'?'>, C<'*'>, C<'+'> and C<{n,m}> will in general match as much of the string as possible while still allowing the whole regexp to match. =end original ˡ§ 2: ����ޥå����̻���� C<'?'>, C<'*'>, C<'+'>, C<{n,m}> �� ����ɽ�����Τ��ޥå��󥰤�����ǺǤ�Ĺ��ʸ����˥ޥå��󥰤��롣 =item * =begin original Principle 3: If there are two or more elements in a regexp, the leftmost greedy quantifier, if any, will match as much of the string as possible while still allowing the whole regexp to match. The next leftmost greedy quantifier, if any, will try to match as much of the string remaining available to it as possible, while still allowing the whole regexp to match. And so on, until all the regexp elements are satisfied. =end original ˡ§ 3: ����ɽ���������İʾ�����Ǥ����ä��ʤ�С����ߤ��̻���Ҥ� �⤷����С�������ǺǤ⺸�ˤ����Τ�����ɽ�����Τ��ޥå��󥰤������ �����Ʋ�ǽ�ʸ¤��Ĺ���ǥޥå��󥰤��롣 �������ߤ��̻���Ҥ�����С�����ϻĤ���������ɽ�����Τ��ޥå��󥰤��� ���ˤ����ƺǤ�Ĺ��ʸ����˥ޥå��󥰤��롣 ����򤹤٤Ƥ�����ɽ�����Ǥ���­�����ޤǷ����֤��� =back =begin original As we have seen above, Principle 0 overrides the others. The regexp will be matched as early as possible, with the other principles determining how the regexp matches at that earliest character position. =end original ���Ǥ˸����褦�ˡ�ˡ§ 0 ��¾�Τ�Τ��񤭤��Ƥ��ޤ��� ����ɽ���ϲ�ǽ�ʸ¤��ᤤ�����ǥޥå��󥰤��褦�Ȥ���¾��ˡ§�Ϥ�������ɽ���� �ɤΤ褦�ˤ��κǤ��᤯���줿ʸ�����֤ǥޥå��󥰤��뤫����ꤷ�Ƥ��ޤ��� =begin original Here is an example of these principles in action: =end original �ʲ��Ϥ�����ˡ§�򥢥���������Ǽ�������Ǥ�: $x = "The programming republic of Perl"; $x =~ /^(.+)(e|r)(.*)$/; # matches, # $1 = 'The programming republic of Pe' # $2 = 'r' # $3 = 'l' =begin original This regexp matches at the earliest string position, C<'T'>. One might think that C<'e'>, being leftmost in the alternation, would be matched, but C<'r'> produces the longest string in the first quantifier. =end original ��������ɽ���ϺǤ��ᤤʸ������� C<'T'> �ǥޥå��󥰤��ޤ��� �������ǺǤ⺸�ˤ��� C<'e'> ���ޥå��󥰤���ȹͤ����ͤ� ���뤫�⤷��ޤ��󤬡�C<'r'> ���ǽ���̻���Ҥ˴ؤ��ƺ�Ĺ��ʸ����� �������ޤ��� $x =~ /(m{1,2})(.*)$/; # matches, # $1 = 'mm' # $2 = 'ing republic of Perl' =begin original Here, The earliest possible match is at the first C<'m'> in C. C is the first quantifier, so it gets to match a maximal C. =end original �����ǡ��Ǥ��ᤤ��ǽ�ʰ��֤� C ����κǽ�� C<'m'> �Ǥ��� C �Ϻǽ���̻���ҤʤΤǡ��Ǥ�Ĺ�� C �˥ޥå��󥰤���ΤǤ��� $x =~ /.*(m{1,2})(.*)$/; # matches, # $1 = 'm' # $2 = 'ing republic of Perl' =begin original Here, the regexp matches at the start of the string. The first quantifier C<.*> grabs as much as possible, leaving just a single C<'m'> for the second quantifier C. =end original ����ϡ�ʸ�������Ƭ������ɽ���ϥޥå��󥰤��ޤ��� �ǽ���̻���� C<.*> �ϲ�ǽ�ʸ¤����ʬ��Ĥ��ߤȤꡢ�����ܤ��̻���� C �Τ���ˤ� C<'m'> ��ʸ�������Ĥ��ޤ��� $x =~ /(.?)(m{1,2})(.*)$/; # matches, # $1 = 'a' # $2 = 'mm' # $3 = 'ing republic of Perl' =begin original Here, C<.?> eats its maximal one character at the earliest possible position in the string, C<'a'> in C, leaving C the opportunity to match both C<'m'>'s. Finally, =end original ������Ǥϡ�C<.?> ��ʸ�������Dz�ǽ�ʸ¤��ᤤ���Ǥκ����ʸ�����Ĥޤ� C ����� C<'a'> ��Ĥ��ߤȤ�ޤ�; C ��ξ���� C<'m'> �� �ޥå��󥰤��뵡���Ϳ�����ޤ��� �ǽ�Ū�ˡ� "aXXXb" =~ /(X*)/; # matches with $1 = '' =begin original because it can match zero copies of C<'X'> at the beginning of the string. If you definitely want to match at least one C<'X'>, use C, not C. =end original �����Ƥ����ʤ�櫓�ϡ�ʸ�������Ƭ�ˤ��� C<'X'> �Υ�����η����֤��� �ޥå��󥰤��뤳�Ȥ��Ǥ��뤫��Ǥ��� ���ʤ��Ȥ��Ĥ� C<'X'> �˥ޥå��󥰤��������ΤǤ���ʤ顢C �ǤϤʤ� C ��Ȥ��ޤ��礦�� =begin original Sometimes greed is not good. At times, we would like quantifiers to match a I piece of string, rather than a maximal piece. For this purpose, Larry Wall created the I or I quantifiers C, C<*?>, C<+?>, and C<{}?>. These are the usual quantifiers with a C<'?'> appended to them. They have the following meanings: =end original ���ߤǤ��뤳�Ȥ��褯�ʤ����⤢��ޤ��� ʸ����κ������ʬ�ǤϤʤ� �Ǿ�����ʬ�˥ޥå��󥰤����̻���Ҥ��ߤ����Ȥ��� ����ޤ��� ������Ū�Τ���ˡ�Larry Wall �� I<�Ǿ��ޥå���>(minimal match) ���뤤�� I<̵�ߤ�>(non-greedy) �̻���� C, C<*?>, C<+?>, C<{}?> �� ���Ф��ޤ����� �������̾���̻���Ҥ� C<'?'> ���դ��ä�����ΤǤ��� �����ϰʲ��Τ褦�ʰ�̣������ޤ�: =over 4 =item * =begin original C means: match C<'a'> 0 or 1 times. Try 0 first, then 1. =end original C ��: 0 �� 1 ��� C<'a'> �˥ޥå��󥰤��ޤ��� �Ϥ���� 0 ��������줫�� 1 ����ޤ��� =item * =begin original C means: match C<'a'> 0 or more times, I, any number of times, but as few times as possible =end original C ��: C<'a'> �Υ�����ʾ�η����֤��˥ޥå��󥰤��ޤ�; Ǥ�ղ�η����֤����Ǥ��ޤ�������ǽ�ʸ¤꾯�ʤ�����ˤʤ�ޤ��� =item * =begin original C means: match C<'a'> 1 or more times, I, at least once, but as few times as possible =end original C ��: C<'a'> �ΰ��ʾ�η����֤��˥ޥå��󥰤��ޤ�; ���ʾ��Ǥ�ղ�η����֤����Ǥ��ޤ�������ǽ�ʸ¤꾯�ʤ�����ˤʤ�ޤ��� =item * =begin original C means: match at least C times, not more than C times, as few times as possible =end original C ��: C ��ʾ� C ��ʲ��η����֤��˥ޥå��󥰤��ޤ�������ǽ�� �¤꾯�ʤ�����ˤʤ�ޤ��� =item * =begin original C means: match at least C times, but as few times as possible =end original C ��: ���ʤ��Ȥ� C ��η����֤��˥ޥå��󥰤��ޤ�������ǽ�ʸ¤� ���ʤ�����ˤʤ�ޤ��� =item * =begin original C means: match exactly C times. Because we match exactly C times, C is equivalent to C and is just there for notational consistency. =end original C ��: ���礦�� C ��η����֤��˥ޥå��󥰤��ޤ��� ���礦�� C ��ʤΤǡ�C �� C �������Ǥ��ꡢ������Τ�������� ¸�ߤ��ޤ��� =back =begin original Let's look at the example above, but with minimal quantifiers: =end original ������Ǿ��̻���Ҥ�Ȥä���Τˤ��Ƥߤޤ��礦: $x = "The programming republic of Perl"; $x =~ /^(.+?)(e|r)(.*)$/; # matches, # $1 = 'Th' # $2 = 'e' # $3 = ' programming republic of Perl' =begin original The minimal string that will allow both the start of the string C<'^'> and the alternation to match is C, with the alternation C matching C<'e'>. The second quantifier C<.*> is free to gobble up the rest of the string. =end original �ޥå��󥰤��뤿���ʸ����γ��ϰ��� C<'^'> �������ξ������­����Ǿ��� ʸ����� C �ǡ����� C �� C<'e'> �˥ޥå��󥰤��ޤ��� �����ܤ��̻���� C<.*> ��ʸ����λĤ꤫�鼫ͳ�ˤĤ��ߤȤ뤳�Ȥ��Ǥ��ޤ��� $x =~ /(m{1,2}?)(.*?)$/; # matches, # $1 = 'm' # $2 = 'ming republic of Perl' =begin original The first string position that this regexp can match is at the first C<'m'> in C. At this position, the minimal C matches just one C<'m'>. Although the second quantifier C<.*?> would prefer to match no characters, it is constrained by the end-of-string anchor C<'$'> to match the rest of the string. =end original ��������ɽ�����ޥå��󥰤��뤳�ȤΤǤ���ʸ����κǽ�ΰ��֤� C ����κǽ�� C<'m'> �Ǥ��� ���ΰ��֤ǡ��Ǿ��ޥå��� C �Ϥ�����Ĥ� C<'m'> �Ǥ��� �����ܤ��̻���� C<.*?> �����˥ޥå��󥰤��褦�Ȥ��ޤ��������ʸ����� ��ü���󥫡� C<'$'> ���˻ߤ��ơ�ʸ����λĤ�˥ޥå��󥰤��ޤ��� $x =~ /(.*?)(m{1,2}?)(.*)$/; # matches, # $1 = 'The progra' # $2 = 'm' # $3 = 'ming republic of Perl' =begin original In this regexp, you might expect the first minimal quantifier C<.*?> to match the empty string, because it is not constrained by a C<'^'> anchor to match the beginning of the word. Principle 0 applies here, however. Because it is possible for the whole regexp to match at the start of the string, it I match at the start of the string. Thus the first quantifier has to match everything up to the first C<'m'>. The second minimal quantifier matches just one C<'m'> and the third quantifier matches the rest of the string. =end original ��������ɽ���ˤ����ơ��Ǿ��̻���� C<.*?> �϶�ʸ����˥ޥå��󥰤���� �ͤ��뤫�⤷��ޤ��󤬡�C<'^'> ���󥫡���ñ�����Ƭ�˥ޥå��󥰤��뤳�Ȥ� �������Ƥ��ޤ��� ˡ§ 0 ��������Ŭ�Ѥ���ޤ��� ʸ�������Ƭ������ɽ�����Τ�ޥå��󥰤����뤳�Ȥ���ǽ�ʤΤǡ�ʸ�������Ƭ�� �ޥå��� I<���ޤ�>�� �������äơ��ǽ���̻���ҤϺǽ�� C<'m'> �ޤǤ˥ޥå��󥰤��ޤ��� �����ܤκǾ��̻���ҤϤ�����ʸ���� C<'m'> �˥ޥå��󥰤��ơ������ܤ��̻���Ҥ� ʸ����λĤ�˥ޥå��󥰤��ޤ��� $x =~ /(.??)(m{1,2})(.*)$/; # matches, # $1 = 'a' # $2 = 'mm' # $3 = 'ing republic of Perl' =begin original Just as in the previous regexp, the first quantifier C<.??> can match earliest at position C<'a'>, so it does. The second quantifier is greedy, so it matches C, and the third matches the rest of the string. =end original �������ɽ����Ʊ���褦�Ǥ������ǽ���̻���� C<.??> �Ϻǽ�� C<'a'> �� ���֤ǥޥå��󥰤Ǥ���ΤǤ������ޤ��� �����ܤ��̻���Ҥ����ߤʤΤ� C �˥ޥå��󥰤��������ܤΤ�Τ�ʸ����� �Ĥ�˥ޥå��󥰤��ޤ��� =begin original We can modify principle 3 above to take into account non-greedy quantifiers: =end original ��˵󤲤�ˡ§ 3 ��̵�ߤ��̻���Ҥ��θ������Τˤ��뤿��˽������ޤ�: =over 4 =item * =begin original Principle 3: If there are two or more elements in a regexp, the leftmost greedy (non-greedy) quantifier, if any, will match as much (little) of the string as possible while still allowing the whole regexp to match. The next leftmost greedy (non-greedy) quantifier, if any, will try to match as much (little) of the string remaining available to it as possible, while still allowing the whole regexp to match. And so on, until all the regexp elements are satisfied. =end original ˡ§ 3: ����ɽ���������İʾ�����Ǥ����ä��ʤ�С����ߤ��̻����(�⤷���� ̵�ߤ��̻����)���⤷����С�������ǺǤ⺸�ˤ����Τ� ����ɽ�����Τ��ޥå��󥰤�����ˤ����Ʋ�ǽ�ʸ¤��Ĺ���ǥޥå��󥰤��롣 �������ߤ��̻����(�⤷����̵�ߤ��̻����)������С�����ϻĤ����� ����ɽ�����Τ��ޥå��󥰤�����ˤ����ƺǤ�Ĺ��(�Ǥ�û��)ʸ����˥ޥå��󥰤��롣 ����򤹤٤Ƥ�����ɽ�����Ǥ���­�����ޤǷ����֤��� =back =begin original Just like alternation, quantifiers are also susceptible to backtracking. Here is a step-by-step analysis of the example =end original �����Ʊ���褦�ˡ��̻���Ҥ�ޤ��Хå��ȥ�å��󥰤�Ԥ���ǽ��������ޤ��� �ʲ��ϥ��ƥåפ��Ȥ��ɤä���Ǥ� $x = "the cat in the hat"; $x =~ /^(.*)(at)(.*)$/; # matches, # $1 = 'the cat in the h' # $2 = 'at' # $3 = '' (0 matches) =over 4 =item Z<>0. Start with the first letter in the string C<'t'>. (Z<>0. ʸ����κǽ��ʸ�� C<'t'> �ǻϤޤ롣) E =item Z<>1. The first quantifier C<'.*'> starts out by matching the whole string "C". (Z<>1. �ǽ���̻���� C<'.*'> ��ʸ�������� "C" �ˤޤ��Ϥ���˥ޥå��󥰤��롣) E =item Z<>2. C<'a'> in the regexp element C<'at'> doesn't match the end of the string. Backtrack one character. (Z<>2. ����ɽ������ C<'at'> �� C<'a'> ��ʸ����������˥ޥå��󥰤��ʤ�����ʸ������ꤹ�롣) E =item Z<>3. C<'a'> in the regexp element C<'at'> still doesn't match the last letter of the string C<'t'>, so backtrack one more character. (Z<>3. ����ɽ������ C<'at'> �� C<'a'> ��ʸ����κǸ��ʸ�� C<'t'> �˥ޥå��󥰤��ʤ��Τǡ����˰�ʸ������ꤹ�롣) E =item Z<>4. Now we can match the C<'a'> and the C<'t'>. (Z<>4. ������ C<'a'> �� C<'t'> �˥ޥå��󥰤��뤳�Ȥ��Ǥ��롣) E =item Z<>5. Move on to the third element C<'.*'>. Since we are at the end of the string and C<'.*'> can match 0 times, assign it the empty string. (�����ܤ����� C<'.*'> �˰ܤ롣ʸ����������˰��֤��Ƥ��ơ�C<'.*'> �� 0 ��η����֤��˥ޥå��󥰤��뤳�Ȥ��Ǥ���ΤǶ�ʸ������������롣) E =item Z<>6. We are done! (��λ!) =back =begin original Most of the time, all this moving forward and backtracking happens quickly and searching is fast. There are some pathological regexps, however, whose execution time exponentially grows with the size of the string. A typical structure that blows up in your face is of the form =end original �ۤȤ�ɤξ�硢�����ؤΰ�ư�ȸ���꤬�����ä��Ȥ��ˤϿ�®�˹Ԥ�졢 �����Ϲ�®�Ǥ��� �������ʤ��顢��ˤ�ʸ�����Ĺ���˱����ƻؿ�Ū�˼¹Ի��֤���Ӥ�褦�� ������Ū(pathological)������ɽ���⤢��ޤ��� ���Τ褦�ʤ�Τ���ϰʲ��Τ褦�ʤ�ΤǤ� /(a|b+)*/; =begin original The problem is the nested indeterminate quantifiers. There are many different ways of partitioning a string of length n between the C<'+'> and C<'*'>: one repetition with C of length n, two repetitions with the first C length k and the second with length n-k, m repetitions whose bits add up to length n, I. In fact there are an exponential number of ways to partition a string as a function of its length. A regexp may get lucky and match early in the process, but if there is no match, Perl will try I possibility before giving up. So be careful with nested C<'*'>'s, C<{n,m}>'s, and C<'+'>'s. The book I by Jeffrey Friedl gives a wonderful discussion of this and other efficiency issues. =end original ������Գ���Υͥ��Ȥ����̻���Ҥ����뤳�ȤǤ��� C<'+'> �� C<'*'> �δ֤ˤ���Ĺ�� n ��ʸ����ˤ�ʣ���ΰۤʤ�ʬ������¸�ߤ��ޤ�: ��Ĥ�Ĺ�� n �� C �ǡ�����ܤ�Ĺ�� k �� C �� n-k ��Ĺ���Τ�Ρ� �����֤� m ��Ĺ�� n �ޤDzä��롢�ʤɤǤ��� Ĺ���δؿ��Ȥ���ʸ�����ʬ�䤹����ˡ�ο��ϻؿ�Ū�ʿ��ˤʤ�ޤ��� ����ɽ���Ϲ����ʤȤ��ˤϽ������ᤤ�ʳ��ǥޥå��󥰤��������뤫�⤷��ޤ��󤬡� �ޥå��󥰤��ʤ��ä����ˤ� Perl �ϲ���夲��ޤ� I<���٤Ƥ�> ��ǽ���� ��ޤ��� �Ǥ����顢�ͥ��Ȥ��� C<'*'>, C<{n,m}>, C<'+'> �ˤ����դ��Ƥ��������� Jeffrey Friedl �ˤ�� I (ˮ�� �־�������ɽ����) �Ȥ����ܤϤ������ä���Ψ������ˤĤ��Ƥ��Ф餷�� ����򤷤Ƥ��ޤ��� =head2 Possessive quantifiers (���к����̻����) =begin original Backtracking during the relentless search for a match may be a waste of time, particularly when the match is bound to fail. Consider the simple pattern =end original �ޥå��󥰤Τ�����ƼϤʤ�������ΥХå��ȥ�å��󥰤ϻ��֤�̵�̤ξ�礬 ����ޤ�; �Ȥ��˥ޥå��󥰤����Ԥ��뱿̿�ˤ���Ȥ��Ϥ����Ǥ��� ��ñ�ʥѥ������ͤ��Ƥߤޤ� /^\w+\s+\w+$/; # a word, spaces, a word =begin original Whenever this is applied to a string which doesn't quite meet the pattern's expectations such as S> or S>, the regexp engine will backtrack, approximately once for each character in the string. But we know that there is no way around taking I of the initial word characters to match the first repetition, that I spaces must be eaten by the middle part, and the same goes for the second word. =end original ���줬��S> �� S> �Τ褦�ʡ��ѥ����� ���ꤷ�Ƥ��ʤ��ä��褦��ʸ�����Ŭ�Ѥ����ȡ�����ɽ�����󥸥�� ʸ����Τ��줾���ʸ�����Ф��Ƥۤ� 1 ��Хå��ȥ�å���Ԥ��ޤ��� ���������䤿���� I<���Ƥ�> �ǽ��ñ��ʸ���󤬺ǽ�η����֤��˥ޥå��󥰤��� I<���Ƥ�> ������֤���ʬ�Ǿ��񤵤졢2 ���ܤ�ñ���Ʊ���褦�� �ʤ뤷���ʤ����Ȥ������Ȥ��ΤäƤ��ޤ��� =begin original With the introduction of the I in Perl 5.10, we have a way of instructing the regexp engine not to backtrack, with the usual quantifiers with a C<'+'> appended to them. This makes them greedy as well as stingy; once they succeed they won't give anything back to permit another solution. They have the following meanings: =end original Perl 5.10 �Ǥ� I<���к����̻����> ��Ƴ���ˤ�äơ� ���̤��̻���Ҥ� C<'+'> ���ɲä��뤳�Ȥǡ�����ɽ�����󥸥�� �Хå��ȥ�å����ʤ��褦�˻ؼ����뤳�Ȥ��Ǥ���褦�ˤʤ�ޤ��� ��������ߤǤ���Τ�Ʊ�ͽФ��ˤ��ߤ򤹤�褦�ˤ��ޤ�; ��ö�ޥå��󥰤���ȡ� ¾�β����Τ���˼������Ȥ������Ȥ򤷤ʤ��ʤ�ޤ��� �����ϰʲ��Τ褦�ʰ�̣������ޤ�: =over 4 =item * =begin original C means: match at least C times, not more than C times, as many times as possible, and don't give anything up. C is short for C =end original C ��: �Ǿ��� C �󡢺���� C ��δ֤ǽ��������������� �ޥå��󥰤��������Ʋ���������ޤ��� C �� C �ξ�ά���Ǥ��� =item * =begin original C means: match at least C times, but as many times as possible, and don't give anything up. C is short for C and C is short for C. =end original C ��: �Ǿ��� C ��ǽ���������������ޥå��󥰤��� �����Ʋ���������ޤ��� C �� C �ξ�ά���ǡ�C �� C �ξ�ά���Ǥ��� =item * =begin original C means: match exactly C times. It is just there for notational consistency. =end original C ��: ���Τ� C ��˥ޥå��󥰤��ޤ��� �����ñ�˰�����Τ���ˤ���ޤ��� =back =begin original These possessive quantifiers represent a special case of a more general concept, the I, see below. =end original ���������к����̻���Ҥϡ��ʲ��ǽҤ٤롢������Ū�ʳ�ǰ�Ǥ��� I<��Ω��ʬ��> ���ü�ʾ���ɽ�����Ƥ��ޤ��� =begin original As an example where a possessive quantifier is suitable we consider matching a quoted string, as it appears in several programming languages. The backslash is used as an escape character that indicates that the next character is to be taken literally, as another character for the string. Therefore, after the opening quote, we expect a (possibly empty) sequence of alternatives: either some character except an unescaped quote or backslash or an escaped character. =end original ���к����̻���Ҥ��դ��路����Ȥ��ơ������Ĥ��Υץ�����ߥ󥰸���� �����褦�ʡ��������Ȥ��줿ʸ����Υޥå��󥰤�ͤ��ޤ��� �Хå�����å���ϼ���ʸ����¾��ʸ����Ʊ�ͥ�ƥ��˰����뤳�Ȥ򼨤� ����������ʸ���Ȥ��ƻȤ��ޤ��� ���äơ������������Ȥθ塢������(�����⤷��ʤ�)�¤Ӥ����ꤷ�ޤ�: ���������פ���Ƥ��ʤ���������ʸ���ʳ��β��餫��ʸ������ �Хå�����å��夫�����������פ��줿ʸ���Ǥ��� /"(?:[^"\\]++|\\.)*+"/; =head2 Building a regexp (����ɽ�����Ȥ�Ω�Ƥ�) =begin original At this point, we have all the basic regexp concepts covered, so let's give a more involved example of a regular expression. We will build a regexp that matches numbers. =end original �����ޤǤǡ����٤Ƥδ���Ū������ɽ���Υ��󥻥ץȤ򥫥С����ޤ���; �Ǥ����顢��ä�ʣ��������ɽ���˹ԤäƤߤޤ��礦�� ��Ȥ��ơ����ͤ˥ޥå��󥰤�������ɽ�����Ȥ�Ω�Ƥޤ��� =begin original The first task in building a regexp is to decide what we want to match and what we want to exclude. In our case, we want to match both integers and floating point numbers and we want to reject any string that isn't a number. =end original ����ɽ�����Ȥ�Ω�Ƥ�ˤ����äƤκǽ�λŻ��ϲ��˥ޥå��󥰤����뤫�Ȳ��� �ӽ����뤫����뤳�ȤǤ��� ����ϡ���������ư����������ξ���˥ޥå��󥰤��������ͤǤʤ�ʸ����򤹤٤� �ӽ����ޤ��� =begin original The next task is to break the problem down into smaller problems that are easily converted into a regexp. =end original ���λŻ�������򡢤������ɽ�����Ѵ����䤹��������������� ʬ�򤹤뤳�ȤǤ��� =begin original The simplest case is integers. These consist of a sequence of digits, with an optional sign in front. The digits we can represent with C<\d+> and the sign can be matched with C<[+-]>. Thus the integer regexp is =end original ��äȤ��ñ�ʥ������������Ǥ��� ����Ͽ������¤ӤǤ��ꡢ��ά��ǽ����椬��Ƭ�ˤ���ޤ��� ������ C<\d+> ��ɽ�����Ȥ��Ǥ������� C<[+-]> �˥ޥå��󥰤����뤳�Ȥ� �Ǥ��ޤ��� �������äơ������˥ޥå��󥰤�������ɽ���ϰʲ��Τ褦�ˤʤ�ޤ� /[+-]?\d+/; # matches integers =begin original A floating point number potentially has a sign, an integral part, a decimal point, a fractional part, and an exponent. One or more of these parts is optional, so we need to check out the different possibilities. Floating point numbers which are in proper form include 123., 0.345, .34, -1e6, and 25.4E-72. As with integers, the sign out front is completely optional and can be matched by C<[+-]?>. We can see that if there is no exponent, floating point numbers must have a decimal point, otherwise they are integers. We might be tempted to model these with C<\d*\.\d*>, but this would also match just a single decimal point, which is not a number. So the three cases of floating point number without exponent are =end original ��ư�������������ȡ��������ȡ��������ȡ��������ȡ��ؿ�������IJ�ǽ���� ����ޤ��� �����ΰ�İʾ�Υѡ��Ĥ���ά��ǽ�Ǥ��ꡢ��ǽ�ʤ�Τ�����å�����ɬ�פ� ����ޤ��� ��������������ư����������123.��0.345��.34��-1e6��25.4E072 �Ȥ��ä���Τ� �ޤߤޤ��� ������Ʊ���褦�ˡ���Ƭ�ˤ������Ͼ�ά��ǽ�� C<[+-]?> �˥ޥå��󥰤��ޤ��� �⤷�ؿ������ʤ����Ȥ��狼��С���ư���������Ͼ�����������ʤ���Фʤ餺�� ���줬�ʤ����ˤϤ���������Ǥ��� C<\d*\.\d*> �Ȥ����ѥ������Ȥ����Ȥ�פ��Ĥ����⤷��ޤ��󤬡������ ���ͤǤϤʤ�������Ĥξ������ˤ�ޥå��󥰤��Ƥ��ޤ��ޤ��� �Ǥ����顢�ؿ����Τʤ���ư�������ˤϰʲ��λ��ĤΥ�������¸�ߤ��ޤ� /[+-]?\d+\./; # 1., 321., etc. /[+-]?\.\d+/; # .1, .234, etc. /[+-]?\d+\.\d+/; # 1.0, 30.56, etc. =begin original These can be combined into a single regexp with a three-way alternation: =end original �����ϻ��Ĥ������Ȥä�ñ�������ɽ���ˤޤȤ�뤳�Ȥ��Ǥ��ޤ�: /[+-]?(\d+\.\d+|\d+\.|\.\d+)/; # floating point, no exponent =begin original In this alternation, it is important to put C<'\d+\.\d+'> before C<'\d+\.'>. If C<'\d+\.'> were first, the regexp would happily match that and ignore the fractional part of the number. =end original ���������ˤ����ơ�C<'\d+\.\d+'��'\d+\.'> ��������֤���Ƥ��뤳�Ȥ� ���פǤ��� �⤷ C<'\d+\.'> ����Ƭ�ˤ��ä��ʤ顢��������ɽ���Ͽ��ͤξ�������̵�뤷�� �ޥå��󥰤��Ƥ��ޤ��Ǥ��礦�� =begin original Now consider floating point numbers with exponents. The key observation here is that I integers and numbers with decimal points are allowed in front of an exponent. Then exponents, like the overall sign, are independent of whether we are matching numbers with or without decimal points, and can be "decoupled" from the mantissa. The overall form of the regexp now becomes clear: =end original �����ǻؿ����������ư����������ͤ��Ƥߤޤ��礦�� �����ǤΥݥ���Ȥϻؿ��������������Ⱦ�������ȼ�ä����� I<ξ��> �� ����뤳�Ȥ��Ǥ���Ȥ������ȤǤ��� �ؿ���������Ʊ���褦�ˡ���������ȼ����ȼ��ʤ����˴ط��ʤ��ޥå��󥰤��� �����������ʬΥ�פ��뤳�Ȥ��ǽ�Ǥ��� ����ɽ�������Τη�������������餫�ˤʤ�ޤ���: /^(optional sign)(integer | f.p. mantissa)(optional exponent)$/; =begin original The exponent is an C<'e'> or C<'E'>, followed by an integer. So the exponent regexp is =end original �ؿ�����������³�� C<'e'> �⤷���� C<'E'> �Ǥ��� �Ǥ�����ؿ���������ɽ���ϰʲ��Τ褦�ˤʤ�ޤ� /[eE][+-]?\d+/; # exponent =begin original Putting all the parts together, we get a regexp that matches numbers: =end original ���٤ƤΥѡ��Ĥ��ĤˤޤȤ�뤳�Ȥˤ�äơ����ͤ˥ޥå��󥰤�������ɽ���� �������ޤ�: /^[+-]?(\d+\.\d+|\d+\.|\.\d+|\d+)([eE][+-]?\d+)?$/; # Ta da! =begin original Long regexps like this may impress your friends, but can be hard to decipher. In complex situations like this, the C modifier for a match is invaluable. It allows one to put nearly arbitrary whitespace and comments into a regexp without affecting their meaning. Using it, we can rewrite our "extended" regexp in the more pleasing form =end original ���Τ褦��Ĺ������ɽ����ͧ�ͤ��������뤳�Ȥ����뤫�⤷��ޤ��󤬡� ���ɤ���Τ��񤷤����⤷��ޤ��� ���Τ褦��ʣ���ʤ�Τˤ����Ƥϡ�C �����ҤϽ��פʤ�ΤǤ��� ���ν����Ҥ�����ɽ�����Ф��Ƥ��ΰ�̣���Ѥ��뤳�Ȥʤ����ۤ�Ǥ�դζ���� ���줿�ꥳ���Ȥ����줿�ꤹ�뤳�Ȥ�����ޤ��� �����Ȥ����Ȥˤ�äơ����狼��䤹������������ɽ���� �ֳ�ĥ�פ��뤳�Ȥ��Ǥ��ޤ� =begin original /^ [+-]? # first, match an optional sign ( # then match integers or f.p. mantissas: \d+\.\d+ # mantissa of the form a.b |\d+\. # mantissa of the form a. |\.\d+ # mantissa of the form .b |\d+ # integer of the form a ) ( [eE] [+-]? \d+ )? # finally, optionally match an exponent $/x; =end original /^ [+-]? # �ޤ��Ϥ���ˡ���ά��ǽ�����˥ޥå��� ( # ³���������� f.p. �������˥ޥå���: \d+\.\d+ # a.b �����β����� |\d+\. # a. �����β����� |\.\d+ # .b �����β����� |\d+ # a ���������� ) ( [eE] [+-]? \d+ )? # �Ǹ�ˡ���ά��ǽ�ʻؿ����˥ޥå��� $/x; =begin original If whitespace is mostly irrelevant, how does one include space characters in an extended regexp? The answer is to backslash it S> or put it in a character class S>. The same thing goes for pound signs: use C<\#> or C<[#]>. For instance, Perl allows a space between the sign and the mantissa or integer, and we could add this to our regexp as follows: =end original �⤷����;�פʤ�ΤǤ���С���ĥ���줿����ɽ���˥��ڡ�����ޤޤ���ˤ� �ɤ�����Ф褤�ΤǤ��礦��? ���������� S> �Τ褦�� �Хå�����å�������֤��뤫��S> �Τ褦��ʸ�����饹�� ��������뤳�ȤǤ��� Ʊ�����Ȥ� '#' �ˤ�����ޤ�: C<\#> �� C<[#]> ��Ȥ��ޤ��� ���Ȥ��С�Perl �����Ȳ�����(�⤷����������) �δ֤˶�����֤����Ȥ� �����Ȥ���ȡ��ʲ��Τ褦������ɽ���˲ä��뤳�Ȥ��Ǥ��ޤ�: =begin original /^ [+-]?\ * # first, match an optional sign *and space* ( # then match integers or f.p. mantissas: \d+\.\d+ # mantissa of the form a.b |\d+\. # mantissa of the form a. |\.\d+ # mantissa of the form .b |\d+ # integer of the form a ) ( [eE] [+-]? \d+ )? # finally, optionally match an exponent $/x; =end original /^ [+-]?\ * # �ޤ��Ϥ���ˡ���ά��ǽ������*���ڡ���*�˥ޥå��� ( # ³���������� f.p. �������˥ޥå���: \d+\.\d+ # a.b �����β����� |\d+\. # a. �����β����� |\.\d+ # .b �����β����� |\d+ # a ���������� ) ( [eE] [+-]? \d+ )? # �Ǹ�ˡ���ά��ǽ�ʻؿ����˥ޥå��� $/x; =begin original In this form, it is easier to see a way to simplify the alternation. Alternatives 1, 2, and 4 all start with C<\d+>, so it could be factored out: =end original ���η����ˤ����Ƥϡ�������ñ��ˤ�����ˡ�򸫤Ĥ���Τϴ�ñ�Ǥ��� ����� 1, 2, 4 �Ϥ��٤� C<\d+> �ǻϤޤäƤ��ޤ�; �Ǥ����餳��� �ޤȤ�뤳�Ȥ��Ǥ��ޤ�: =begin original /^ [+-]?\ * # first, match an optional sign ( # then match integers or f.p. mantissas: \d+ # start out with a ... ( \.\d* # mantissa of the form a.b or a. )? # ? takes care of integers of the form a |\.\d+ # mantissa of the form .b ) ( [eE] [+-]? \d+ )? # finally, optionally match an exponent $/x; =end original /^ [+-]?\ * # �ޤ��Ϥ���ˡ���ά��ǽ�����˥ޥå��� ( # ³���������� f.p. �������˥ޥå���: \d+ # �Ϥ���ϡ� ( \.\d* # a.b�����⤷����a.�����β����� )? # ? ��a�������������θ���� |\.\d+ # .b�����β����� ) ( [eE] [+-]? \d+ )? # �Ǹ�ˡ���ά��ǽ�ʻؿ����˥ޥå��� $/x; =begin original Starting in Perl v5.26, specifying C changes the square-bracketed portions of a pattern to ignore tabs and space characters unless they are escaped by preceding them with a backslash. So, we could write =end original Perl v5.26 ���顢C ����ꤹ��ȡ��ե���å�������֤��뤳�Ȥˤ�ä� ���������פ��ʤ��¤ꡢ���֤ȥ��ڡ�����ʸ�����̵�뤹��褦�� �ѥ�������礫�ä��ǰϤޤ줿��ʬ���ѹ����ޤ��� ���äơ����Τ褦�˽񤱤ޤ�: /^ [ + - ]?\ * # first, match an optional sign ( # then match integers or f.p. mantissas: \d+ # start out with a ... ( \.\d* # mantissa of the form a.b or a. )? # ? takes care of integers of the form a |\.\d+ # mantissa of the form .b ) ( [ e E ] [ + - ]? \d+ )? # finally, optionally match an exponent $/xx; =begin original This doesn't really improve the legibility of this example, but it's available in case you want it. Squashing the pattern down to the compact form, we have =end original ����Ϥ�������ɤߤ䤹���������˲������ƤϤ��ޤ��󤬡� �Ȥ��������Ǥ����Ѳ�ǽ�Ǥ��� ����ѥ��Ȥʷ����˥ѥ�����򰵽̤���ȡ����Τ褦�ˤʤ�ޤ�: /^[+-]?\ *(\d+(\.\d*)?|\.\d+)([eE][+-]?\d+)?$/; =begin original This is our final regexp. To recap, we built a regexp by =end original ���줬�ǽ���������ɽ���Ǥ��� �����Ǥϰʲ��Τ褦�ˤ�������ɽ�����Ȥ�Ω�Ƥޤ����� =over 4 =item * =begin original specifying the task in detail, =end original �ʤ��٤����Ȥ�ܺ٤˳��ꤷ�� =item * =begin original breaking down the problem into smaller parts, =end original ����򾮤��ʥѡ��Ĥ�ʬ�䤷�� =item * =begin original translating the small parts into regexps, =end original ���ξ����ʥѡ��Ĥ�����ɽ�����Ѵ����� =item * =begin original combining the regexps, =end original ��������ɽ�����Ȥ߹�碌�� =item * =begin original and optimizing the final combined regexp. =end original �Ȥ߹�蘆�줿�ǽ�Ū������ɽ�����Ŭ�����롣 =back =begin original These are also the typical steps involved in writing a computer program. This makes perfect sense, because regular expressions are essentially programs written in a little computer language that specifies patterns. =end original ����ϥ���ԥ塼���ץ�������񤯤ˤ����äƤ�ŵ��Ū�ʥ��ƥåפǤ� ����ޤ��� ����ɽ���ϥѥ���������ꤹ�뾮���ʥ���ԥ塼������ǽ� �ץ������Ǥ���Τǡ����Τ��ȤϤޤ������ƤϤޤ�ޤ��� =head2 Using regular expressions in Perl (Perl ������ɽ����Ȥ�) =begin original The last topic of Part 1 briefly covers how regexps are used in Perl programs. Where do they fit into Perl syntax? =end original �ѡ��� 1 �κǸ�Υȥԥå�������ɽ����Perl�ץ������ǤɤΤ褦�� �Ȥ��Ƥ��뤫���������ޤ��� ����ɽ���� Perl �ι�ʸ�Τɤ��˥ե��åȤ��Ƥ���ΤǤ��礦? =begin original We have already introduced the matching operator in its default C and arbitrary delimiter C forms. We have used the binding operator C<=~> and its negation C to test for string matches. Associated with the matching operator, we have discussed the single line C, multi-line C, case-insensitive C and extended C modifiers. There are a few more things you might want to know about matching operators. =end original ���Ǥ˥ǥե���Ȥ� C ��Ǥ�դΥǥ�ߥ������ C ������ �ޥå��󥰱黻�Ҥ��������Ƥ��ޤ��� �ޥå��󥰤�����ʸ�������ꤹ�뤿��� C<=~> �黻�Ҥ� C �黻�Ҥ� �ȤäƤ��ޤ��� �ޥå��󥰱黻�ҤˤĤ��ơ�ñ��Խ����� C��ʣ���Խ����� C�� �羮ʸ���ΰ㤤��̵�뤹�뽤���� C����ĥ������ C �ˤĤ��ƽҤ٤ޤ����� �ޥå��󥰱黻�Ҥ˴ؤ��ơ��ΤäƤ��������Ǥ����������Ĥ��λ���������ޤ��� =head3 Prohibiting substitution (�ִ���ػߤ���) =begin original If you change C<$pattern> after the first substitution happens, Perl will ignore it. If you don't want any substitutions at all, use the special delimiter C: =end original �⤷�ǽ���ִ����Ԥ�줿��� C<$pattern> ���ѹ������Ȥ��Ƥ⡢Perl �� �����̵�뤷�ޤ��� ���٤Ƥ��ִ���Ԥ������ʤ��Ȥ����ΤǤ���С��ü�ʥǥ�ߥ� C ��Ȥ��ޤ�: =begin original @pattern = ('Seuss'); while (<>) { print if m'@pattern'; # matches literal '@pattern', not 'Seuss' } =end original @pattern = ('Seuss'); while (<>) { print if m'@pattern'; # 'Seuss' �ǤϤʤ���ƥ��� '@pattern' �˥ޥå��� } =begin original Similar to strings, C acts like apostrophes on a regexp; all other C<'m'> delimiters act like quotes. If the regexp evaluates to the empty string, the regexp in the I is used instead. So we have =end original ʸ�����Ʊ�͡�C ������ɽ���ˤ����ƥ��󥰥륯�����ȤΤ褦�˿��񤤤ޤ��� ¾�Τ��٤Ƥ� C<'m'> �ǥ�ߥ��ϥ��֥륯�����ȤΤ褦�˿��񤤤ޤ��� �⤷����ɽ������ʸ�����ɾ�������ʤ�С���������ɽ���� I<�Ǹ����������> �ޥå��󥰤ˤ�������ɽ��������˻Ȥ��ޤ��� =begin original "dog" =~ /d/; # 'd' matches "dogbert =~ //; # this matches the 'd' regexp used before =end original "dog" =~ /d/; # 'd' �˥ޥå��� "dogbert =~ //; # ľ���˻Ȥ�줿����ɽ���Ǥ��� 'd' �˥ޥå��� =head3 Global matching (�������Х�ޥå���) =begin original The final two modifiers we will discuss here, C and C, concern multiple matches. The modifier C stands for global matching and allows the matching operator to match within a string as many times as possible. In scalar context, successive invocations against a string will have C jump from match to match, keeping track of position in the string as it goes along. You can get or set the position with the C function. =end original �����ǵ�������Ǹ����Ĥν����� C �� C ��ʣ����ޥå��󥰤� ��Ϣ�����ΤǤ��� ������ C �ϥ������Х�ޥå��󥰤��̣�����ޥå��󥰱黻�Ҥ��Ф��� ʸ�������Dz�ǽ�ʸ¤�β���ޥå��󥰤���褦�ˤ��ޤ��� �����饳��ƥ����ȤǤϡ�����ʸ������Ф���Ϣ³�����ƤӽФ��ϥޥå��󥰤��� �ޥå��󥰤ؤȥ����פ��� C �����������ʸ�������Ǥΰ��֤򵭲����ޤ��� C �ؿ���ȤäƤ��ΰ��֤���Ф��������ꤷ���ꤹ�뤳�Ȥ��Ǥ��ޤ��� =begin original The use of C is shown in the following example. Suppose we have a string that consists of words separated by spaces. If we know how many words there are in advance, we could extract the words using groupings: =end original C ��Ȥä����ʲ��˵󤲤ޤ��� �����ǡ�����ˤ�äƶ��ڤ�줿ñ����¤Ӥ���ʤ�ʸ���󤬤���Ȥ��ޤ��� �⤷�����Ĥ�ñ�줬���뤫���狼�äƤ���С����롼�ײ���Ȥä�ñ��� ���Ф����Ȥ��Ǥ��ޤ�: $x = "cat dog house"; # 3 words $x =~ /^\s*(\w+)\s+(\w+)\s+(\w+)\s*$/; # matches, # $1 = 'cat' # $2 = 'dog' # $3 = 'house' =begin original But what if we had an indeterminate number of words? This is the sort of task C was made for. To extract all words, form the simple regexp C<(\w+)> and loop over all matches with C: =end original �������⤷����Ĥ�ñ�줬����Ȥ�����? ���줬 C �����줿��ͳ�Ȥʤä���λŻ��Ǥ��� ���٤Ƥ�ñ�����Ф�����ˡ�ñ��� C<(\w+)> �Ȥ�������ɽ����Ȥ��� C ��롼�פǻȤäƤ��٤Ƥ˥ޥå��󥰤����ޤ�: while ($x =~ /(\w+)/g) { print "Word is $1, ends at position ", pos $x, "\n"; } =begin original prints =end original �ʲ��ν��Ϥ�Ԥ��ޤ� Word is cat, ends at position 3 Word is dog, ends at position 7 Word is house, ends at position 13 =begin original A failed match or changing the target string resets the position. If you don't want the position reset after failure to match, add the C, as in C. The current position in the string is associated with the string, not the regexp. This means that different strings have different positions and their respective positions can be set or read independently. =end original �ޥå��󥰤˼��Ԥ����ꡢ�������å�ʸ������ѹ�����Ȥ��ΰ��֤� �ꥻ�åȤ���ޤ��� �⤷�ޥå��󥰤˼��Ԥ����Ȥ��˰��֤�ꥻ�åȤ������ʤ��ΤǤ���С� C �Τ褦�� C ���ɲä��ޤ��� ʸ�������Υ����Ȱ��֤Ϥ���ʸ����˷���դ����Ƥ��ơ�����ɽ���ˤǤ� ����ޤ��� ���Τ��Ȥϰۤʤ�ʸ����ϰۤʤ���֤���äƤ��ơ������Τ��줾��ΰ��֤� ��Ω�˥��åȤ������ɤ߽Ф����ꤹ�뤳�Ȥ���ǽ�Ǥ��� =begin original In list context, C returns a list of matched groupings, or if there are no groupings, a list of matches to the whole regexp. So if we wanted just the words, we could use =end original �ꥹ�ȥ���ƥ����ȤǤϡ�C �ϥޥå��󥰤������롼�פΥꥹ�Ȥ��֤��ޤ�; ���롼�ײ��λ��꤬�ʤ���С�����ɽ�����Τ˥ޥå��󥰤���ꥹ�Ȥ��֤��ޤ��� �Ǥ����顢ñ��ñ�줬�ߤ����ΤǤ�� @words = ($x =~ /(\w+)/g); # matches, # $words[0] = 'cat' # $words[1] = 'dog' # $words[2] = 'house' =begin original Closely associated with the C modifier is the C<\G> anchor. The C<\G> anchor matches at the point where the previous C match left off. C<\G> allows us to easily do context-sensitive matching: =end original C �����Ҥ�\G���󥫡��˶�������դ����Ƥ��ޤ��� C<\G> ���󥫡���ľ���� C �ޥå��󥰤ǻĤä���ʬ�˥ޥå��󥰤��ޤ��� C<\G> �ϥ���ƥ����Ȥ��θ�����ޥå���(context-sensitive matching)�� �ưפˤ����ޤ�: =begin original $metric = 1; # use metric units ... $x = ; # read in measurement $x =~ /^([+-]?\d+)\s*/g; # get magnitude $weight = $1; if ($metric) { # error checking print "Units error!" unless $x =~ /\Gkg\./g; } else { print "Units error!" unless $x =~ /\Glbs\./g; } $x =~ /\G\s+(widget|sprocket)/g; # continue processing =end original $metric = 1; # metric ��˥åȤ�Ȥ� ... $x = ; # ¬��Τ�����ɤ߹��� $x =~ /^([+-]?\d+)\s*/g; # �Ť������ $weight = $1; if ($metric) { # ���顼�����å� print "Units error!" unless $x =~ /\Gkg\./g; } else { print "Units error!" unless $x =~ /\Glbs\./g; } $x =~ /\G\s+(widget|sprocket)/g; # ������³���� =begin original The combination of C and C<\G> allows us to process the string a bit at a time and use arbitrary Perl logic to decide what to do next. Currently, the C<\G> anchor is only fully supported when used to anchor to the start of the pattern. =end original C �� C<\G> ���Ȥ߹�碌�ϰ��٤�ʸ����򾯤������������ơ����� �Ԥ����Ȥ���ꤹ�뤿���Ǥ�դ� Perl �Υ����å���Ȥ����Ȥ��ǽ�ˤ��ޤ��� ���ߤΤȤ�����C<\G> ���󥫡��ϥѥ�����κǽ�˻Ȥ�줿�Ȥ��Τ� �����˥��ݡ��Ȥ���ޤ��� =begin original C<\G> is also invaluable in processing fixed-length records with regexps. Suppose we have a snippet of coding region DNA, encoded as base pair letters C and we want to find all the stop codons C. In a coding region, codons are 3-letter sequences, so we can think of the DNA snippet as a sequence of 3-letter records. The naive regexp =end original C<\G> �Ϥޤ�������ɽ����ȤäƸ���Ĺ�Υ쥳���ɤ��������Ȥ��˵��Ťʤ�ΤǤ��� ���äȤʤ��Ȥ߹�碌ʸ���ǥ��󥳡��ɤ��줿 C �Τ褦�� DNA ����沽��ʬ������Ȥ��ơ����٤ƤΥ��ȥåץ��ɥ� (codon: 3 �Ĥ� �̥��쥪���ɤ������롤���������ñ��)�򸫤Ĥ��Ф������Ȥ��ޤ��礦�� ��沽��ʬ����Ǥϡ����ɥ�ϻ�ʸ�����¤ӤʤΤ� DNA �����Ҥ� ��ʸ���Υ쥳���ɤ��¤ӤȤ��Ƥߤʤ����Ȥ��Ǥ��ޤ��� ñ�������ɽ���Ǥ��� # expanded, this is "ATC GTT GAA TGC AAA TGA CAT GAC" $dna = "ATCGTTGAATGCAAATGACATGAC"; $dna =~ /TGA/; =begin original doesn't work; it may match a C, but there is no guarantee that the match is aligned with codon boundaries, I, the substring S> gives a match. A better solution is =end original �Ϥ��ޤ������ޤ���; ����� C �˥ޥå��󥰤Ϥ��ޤ����� S> �Τ褦�˥��ɥ�ζ����ˤʤ���Τˤ�ޥå��󥰤��Ƥ��ޤ��ޤ��� ����ɤ������ϰʲ��Τ褦�ʤ�ΤǤ� while ($dna =~ /(\w\w\w)*?TGA/g) { # note the minimal *? print "Got a TGA stop codon at position ", pos $dna, "\n"; } =begin original which prints =end original ����ϰʲ�����Ϥ��ޤ� Got a TGA stop codon at position 18 Got a TGA stop codon at position 23 =begin original Position 18 is good, but position 23 is bogus. What happened? =end original Position 18 ���ɤ��Ǥ�����23 ���ѤǤ��� ���������Ƥ���ΤǤ��礦? =begin original The answer is that our regexp works well until we get past the last real match. Then the regexp will fail to match a synchronized C and start stepping ahead one character position at a time, not what we want. The solution is to use C<\G> to anchor the match to the codon alignment: =end original ���������ϡ��䤿��������ɽ�����Ǹ�������˥ޥå��󥰤����Ȥ����ޤǤ� ���ޤ����äƤ��뤫��Ǥ��� ���줫�餳������ɽ���� C ��Ʊ���˼��Ԥ��ƻ䤿����˾��Ǥ��ʤ���꤫�� �ޥå��󥰤Υ��ƥåפ�Ϥ�Ƥ��ޤ��ΤǤ��� �����ϡ����ɥ�ζ����˥ޥå��󥰤����뤿��� C<\G> �� �Ȥäư��դ��򤹤뤳�ȤǤ�: while ($dna =~ /\G(\w\w\w)*?TGA/g) { print "Got a TGA stop codon at position ", pos $dna, "\n"; } =begin original This prints =end original ����� Got a TGA stop codon at position 18 =begin original which is the correct answer. This example illustrates that it is important not only to match what is desired, but to reject what is not desired. =end original ����Ϥ��������������������Ǥ��� ������ϥޥå��󥰤�����Τ˥ޥå��󥰤��뤳�Ȥ��������פʤΤǤϤʤ��� ˾��Ǥ��ʤ���Τ��ӽ����뤳�Ȥ�ޤ������ʤΤ��Ȥ������Ȥ� ���餫�ˤ��ޤ����� =begin original (There are other regexp modifiers that are available, such as C, but their specialized uses are beyond the scope of this introduction. ) =end original (C �Τ褦�ʤ���¾������ɽ�������Ҥ����Ѳ�ǽ�Ǥ������������ü�� ����ˡ�Ϥ��ν����Υ������פ���ϳ���ޤ���) =head3 Search and replace (�������ִ�) =begin original Regular expressions also play a big role in I operations in Perl. Search and replace is accomplished with the C operator. The general form is C, with everything we know about regexps and modifiers applying in this case as well. The I is a Perl double-quoted string that replaces in the string whatever is matched with the C. The operator C<=~> is also used here to associate a string with C. If matching against C<$_>, the S> can be dropped. If there is a match, C returns the number of substitutions made; otherwise it returns false. Here are a few examples: =end original ����ɽ���Ϥޤ���Perl �ˤ����븡�����ִ����ˤ������礭������ �̤����Ƥ��ޤ��� �������ִ��� C �黻�Ҥ˷���դ����Ƥ��ޤ��� ����Ū�ʷ��� C �ǡ��ΤäƤ��뤹�٤Ƥ� ����ɽ���Ƚ����Ҥ򤳤��ǻȤ����Ȥ��Ǥ��ޤ��� I �� Perl�ǤΥ��֥륯�����ȤǰϤޤ줿ʸ����ǡ� C �˥ޥå��󥰤���ʸ������֤��������ΤǤ��� C<=~> �黻�Ҥ�ޤ� C ��ȼ�ä�ʸ����˷�ӤĤ����뤿��˻Ȥ��ޤ��� C<$_> ���Ф��ƥޥå��󥰤�Ԥ����ˤϡ�S> �Ͼ�ά�Ǥ��ޤ��� �ޥå��󥰤������������ˤ� C ���ִ����Ԥ�줿�����֤��ޤ�; ���Ԥ������ˤϵ����֤��ޤ��� ���Ĥ����󤲤ޤ��礦: =begin original $x = "Time to feed the cat!"; $x =~ s/cat/hacker/; # $x contains "Time to feed the hacker!" if ($x =~ s/^(Time.*hacker)!$/$1 now!/) { $more_insistent = 1; } $y = "'quoted words'"; $y =~ s/^'(.*)'$/$1/; # strip single quotes, # $y contains "quoted words" =end original $x = "Time to feed the cat!"; $x =~ s/cat/hacker/; # $x �����Ƥ� "Time to feed the hacker!" if ($x =~ s/^(Time.*hacker)!$/$1 now!/) { $more_insistent = 1; } $y = "'quoted words'"; $y =~ s/^'(.*)'$/$1/; # ���󥰥륯�����Ȥ�������� # $y �����Ƥ� "quoted words" =begin original In the last example, the whole string was matched, but only the part inside the single quotes was grouped. With the C operator, the matched variables C<$1>, C<$2>, I. are immediately available for use in the replacement expression, so we use C<$1> to replace the quoted string with just what was quoted. With the global modifier, C will search and replace all occurrences of the regexp in the string: =end original �Ǹ����Ǥϡ�ʸ�������Τ��ޥå��󥰤��ޤ��������󥰥륯�����Ȥ������� ��ʬ�Τߤ����롼�ײ�����ޤ��� C �黻�ҤǤϡ��ޥå��󥰤����ѿ� C<$1>, C<$2>, �ʤɤ��ִ����� �Ȥ���褦��ľ�������Ѳ�ǽ�ˤʤ�Τǡ��������Ȥ��줿ʸ�������Ȥ� �ִ����뤿��� C<$1> ��Ȥ��ޤ��� �������Х뽤�����դ��ʤΤǡ�C ��ʸ����������Ƥ򸡺������ִ����ޤ�: =begin original $x = "I batted 4 for 4"; $x =~ s/4/four/; # doesn't do it all: # $x contains "I batted four for 4" $x = "I batted 4 for 4"; $x =~ s/4/four/g; # does it all: # $x contains "I batted four for four" =end original $x = "I batted 4 for 4"; $x =~ s/4/four/; # ���٤Ƥˤϥޥå��󥰤��ʤ�: # $x �����Ƥ� "I batted four for 4" $x = "I batted 4 for 4"; $x =~ s/4/four/g; # ���٤Ƥ˥ޥå���: # $x �����Ƥ� "I batted four for four" =begin original If you prefer "regex" over "regexp" in this tutorial, you could use the following program to replace it: =end original ���Υ��塼�ȥꥢ��ˤ��� "regexp" �� "regex" �ˤ��뤳�Ȥ�˾��Τʤ顢 �ʲ��Υץ�������Ȥä��ִ����뤳�Ȥ��Ǥ��ޤ�: % cat > simple_replace #!/usr/bin/perl $regexp = shift; $replacement = shift; while (<>) { s/$regexp/$replacement/g; print; } ^D % simple_replace regexp regex perlretut.pod =begin original In C we used the C modifier to replace all occurrences of the regexp on each line. (Even though the regular expression appears in a loop, Perl is smart enough to compile it only once.) As with C, both the C and the C use C<$_> implicitly. =end original C �ǤϳƹԤΤ��٤Ƥ�����ɽ���˥ޥå��󥰤�����ʬ�� �ִ����뤿��� C �����Ҥ�Ȥ��ޤ��� (����ɽ�����롼����ˤ���褦�˸����ޤ�����Perl �Ϥ������٤��� ����ѥ��뤹�뤰�餤�����Ǥ���) C ��Ʊ�͡�C �� C �� C<$_> ����ۤ˻��Ѥ��Ƥ��ޤ��� =begin original If you don't want C to change your original variable you can use the non-destructive substitute modifier, C. This changes the behavior so that C returns the final substituted string (instead of the number of substitutions): =end original ����ѿ����ѹ����뤿��� C ��Ȥ������ʤ��ʤ顢���˲��ִ������ҤǤ��� C ���Ȥ��ޤ��� ����ϡ�C �� (�ִ��ο��ǤϤʤ�)�ǽ�Ū���ִ����줿ʸ������֤��褦�� �����񤤤��ѹ����ޤ�: $x = "I like dogs."; $y = $x =~ s/dogs/cats/r; print "$x $y\n"; =begin original That example will print "I like dogs. I like cats". Notice the original C<$x> variable has not been affected. The overall result of the substitution is instead stored in C<$y>. If the substitution doesn't affect anything then the original string is returned: =end original ������ϡ�"I like dogs. I like cats" ��ɽ�����ޤ��� ���� C<$x> �ѿ��ϱƶ�������ʤ����Ȥ����դ��Ƥ��������� �ִ��η�����Τ������ C<$y> �˳�Ǽ����ޤ��� �ִ�������ƶ���Ϳ���ʤ��ä���硢����ʸ�����֤���ޤ�: $x = "I like dogs."; $y = $x =~ s/elephants/cougars/r; print "$x $y\n"; # prints "I like dogs. I like dogs." =begin original One other interesting thing that the C flag allows is chaining substitutions: =end original C �ե饰�ˤ��⤦��Ĥζ�̣�������Ȥϡ��ִ���Ϣ���Ǥ�: $x = "Cats are great."; print $x =~ s/Cats/Dogs/r =~ s/Dogs/Frogs/r =~ s/Frogs/Hedgehogs/r, "\n"; # prints "Hedgehogs are great." =begin original A modifier available specifically to search and replace is the C evaluation modifier. C treats the replacement text as Perl code, rather than a double-quoted string. The value that the code returns is substituted for the matched substring. C is useful if you need to do a bit of computation in the process of replacing text. This example counts character frequencies in a line: =end original �������ִ��ˤ����ƻȤ����ȤΤǤ��뽤���Ҥ�ɾ�������� C ������ޤ��� C �ϡ��ִ�ʸ�������֥륯�����Ȥ��줿ʸ����ǤϤʤ� Perl �����ɤȤ��ư����ޤ��� �����ɤ��֤����ͤϥޥå��󥰤�����ʬʸ������ִ�����ޤ��� C ���ִ��ƥ����Ȥν����ˤ����Ƥ���äȤ����׻���Ԥ�ɬ�פ� ����Ȥ��������Ǥ��� �ʲ�����Ϥ���Ԥ�ʸ���νи����٤�����ޤ�: =begin original $x = "Bill the cat"; $x =~ s/(.)/$chars{$1}++;$1/eg; # final $1 replaces char with itself print "frequency of '$_' is $chars{$_}\n" foreach (sort {$chars{$b} <=> $chars{$a}} keys %chars); =end original $x = "Bill the cat"; $x =~ s/(.)/$chars{$1}++;$1/eg; # �ǽ�Ū�� $1 �Ϥ��켫�Ȥ�ʸ�����ִ������ print "frequency of '$_' is $chars{$_}\n" foreach (sort {$chars{$b} <=> $chars{$a}} keys %chars); =begin original This prints =end original ����� frequency of ' ' is 2 frequency of 't' is 2 frequency of 'l' is 2 frequency of 'B' is 1 frequency of 'c' is 1 frequency of 'e' is 1 frequency of 'h' is 1 frequency of 'i' is 1 frequency of 'a' is 1 =begin original As with the match C operator, C can use other delimiters, such as C and C, and even C. If single quotes are used C, then the regexp and replacement are treated as single-quoted strings and there are no variable substitutions. C in list context returns the same thing as in scalar context, I, the number of matches. =end original C �黻�Ҥ�Ʊ�ͤˡ�C �� C �� C �� �̤Ƥ� C �Τ褦�˰ۤʤ�ǥ�ߥ���Ȥ����Ȥ��Ǥ��ޤ��� C �Τ褦�˥��󥰥륯�����Ȥ��Ȥ�줿��硢��������ɽ���� �ִ��ƥ����Ȥϥ��󥰥륯������ʸ����Τ褦�˰���졢�ѿ����֤������� �Ԥ��ޤ��� �ꥹ�ȥ���ƥ����ȤǤ� C �ϥ����饳��ƥ����ȤΤȤ���Ʊ���褦�ˡ� �ޥå��󥰤��������֤��ޤ��� =head3 The split function (split �ؿ�) =begin original The C function is another place where a regexp is used. C separates the C operand into a list of substrings and returns that list. The regexp must be designed to match whatever constitutes the separators for the desired substrings. The C, if present, constrains splitting into no more than C number of strings. For example, to split a string into words, use =end original C �ؿ��ϡ�����ɽ�����Ȥ���⤦��Ĥξ��Ǥ��� C �� C ���ڥ��ɤ���ʬʸ����� �ꥹ�Ȥ�ʬ�䤷�����Υꥹ�Ȥ��֤��ޤ��� ����ɽ���ϡ���Ū����ʬʸ����Υ��ѥ졼�����������Τ� �ޥå��󥰤���褦�ˤ��ʤ���Фʤ�ޤ��� C ��Ϳ����줿���ˤϡ�ʸ����� C �Ĥ�Ķ������ˤ� ʬ�䤷�ޤ��� ���Ȥ��С�ʸ�����ñ���ʬ�䤹��ˤϰʲ��Τ褦�ˤ��ޤ� $x = "Calvin and Hobbes"; @words = split /\s+/, $x; # $word[0] = 'Calvin' # $word[1] = 'and' # $word[2] = 'Hobbes' =begin original If the empty regexp C is used, the regexp always matches and the string is split into individual characters. If the regexp has groupings, then the resulting list contains the matched substrings from the groupings as well. For instance, =end original C ���Ȥ�줿���ˤϡ���������ɽ���Ͼ�˥ޥå��󥰤���ʸ����ϸġ���ʸ���� ʬ�䤵��ޤ��� ����ɽ�������롼�ײ���ȼ�äƤ������ˤϡ����롼�ײ����줿��Τ���ʬʸ����� �ޤޤ��褦�ˤʤ�ޤ��� ���󤲤�Ȱʲ��Τ褦�ˤʤ�ޤ� $x = "/usr/bin/perl"; @dirs = split m!/!, $x; # $dirs[0] = '' # $dirs[1] = 'usr' # $dirs[2] = 'bin' # $dirs[3] = 'perl' @parts = split m!(/)!, $x; # $parts[0] = '' # $parts[1] = '/' # $parts[2] = 'usr' # $parts[3] = '/' # $parts[4] = 'bin' # $parts[5] = '/' # $parts[6] = 'perl' =begin original Since the first character of C<$x> matched the regexp, C prepended an empty initial element to the list. =end original C<$x> �κǽ��ʸ��������ɽ�����ޥå��󥰤��Ƥ���Τǡ�C �ϥꥹ�Ȥ� �ǽ�����Ǥ˶����Ǥ��֤��ޤ��� =begin original If you have read this far, congratulations! You now have all the basic tools needed to use regular expressions to solve a wide range of text processing problems. If this is your first time through the tutorial, why not stop here and play around with regexps a while.... S concerns the more esoteric aspects of regular expressions and those concepts certainly aren't needed right at the start. =end original �����ޤ��ɤ߿ʤ�Ƥ����Τʤ餪��ǤȤ�! ���ʤ��Ϲ��ϰϤΥƥ����Ƚ������褹��Τ�ɬ�פ�����ɽ���δ���Ū����ʬ�� ���٤Ʋ������ޤ����� ���Υ��塼�ȥꥢ�������ɤ�Ǥ����ޤǤ����Τʤ顢������Ω���ߤޤä� ����ɽ����ȤäƤߤ�Τ��ɤ��Ǥ��礦�� S �ǤϤ����������ɽ����¦�̤˸��ڤ��ޤ��� =head1 Part 2: Power tools (�ѡ��� 2: ���Ϥʥġ���) =begin original OK, you know the basics of regexps and you want to know more. If matching regular expressions is analogous to a walk in the woods, then the tools discussed in Part 1 are analogous to topo maps and a compass, basic tools we use all the time. Most of the tools in part 2 are analogous to flare guns and satellite phones. They aren't used too often on a hike, but when we are stuck, they can be invaluable. =end original ���ʤ��Ϥ��Ǥ�����ɽ���δ���Ū�ʤ��Ȥ��ΤäƤ��ơ���꿼�� �Τ����Ȥ��Ƥ��ޤ��� ����ɽ���Υޥå��󥰤���������⤯���Ȥ�������Ƥ���Τʤ顢�ѡ��� 1 �� �Ҥ٤�줿�ġ�����ϿޤǤ��ꥳ��ѥ��Ǥ��ꡢ���Ĥ�Ȥ�����Ū��ƻ��Ǥ��� �ѡ��� 2 �Ǥ�����ʬ�Υġ���Ͼ����ƤǤ��ꡢ�������äǤ��� �ϥ����󥰤ˤϤ��������Ȥ���ΤǤϤ���ޤ��󤬡�����̤Ƥ��Ȥ��ˤ� �ȤƤ⵮�Ťʤ�ΤǤ��� =begin original What follows are the more advanced, less used, or sometimes esoteric capabilities of Perl regexps. In Part 2, we will assume you are comfortable with the basics and concentrate on the advanced features. =end original �ʲ��˵󤲤��Τ� Perl ������ɽ���ˤ����Ƥ����٤ǡ� ���ޤ�Ȥ����ȤΤʤ������Ȥ������ʵ�ǽ�Ǥ��� Part 2 �Ǥϡ����ʤ������ܤ��ɤ��ΤäƤ��Ƥ��ʤ����ǽ�˽���Ǥ��뤳�Ȥ� ���ꤷ�Ƥ��ޤ��� =head2 More on characters, strings, and character classes (ʸ����ʸ����ʸ�����饹�ˤĤ��Ƥ��ɲû���) =begin original There are a number of escape sequences and character classes that we haven't covered yet. =end original �ޤ����С����Ƥ��ʤ����Ĥ��Υ��������ץ������󥹤�ʸ�����饹������ޤ��� =begin original There are several escape sequences that convert characters or strings between upper and lower case, and they are also available within patterns. C<\l> and C<\u> convert the next character to lower or upper case, respectively: =end original ʸ����ʸ������羮ʸ�����Ѵ����륨�������ץ������󥹤����ꡢ ������ѥ�����ǻȤ��ޤ��� C<\l> �� C<\u> ��³��ʸ���򤽤줾�쾮ʸ������ʸ�����Ѵ����ޤ�: =begin original $x = "perl"; $string =~ /\u$x/; # matches 'Perl' in $string $x = "M(rs?|s)\\."; # note the double backslash $string =~ /\l$x/; # matches 'mr.', 'mrs.', and 'ms.', =end original $x = "perl"; $string =~ /\u$x/; # $string ����� 'Perl' �˥ޥå��� $x = "M(rs?|s)\\."; # ��ŤΥХå�����å�������� $string =~ /\l$x/; # 'mr.', 'mrs.', 'ms.' �˥ޥå��� =begin original A C<\L> or C<\U> indicates a lasting conversion of case, until terminated by C<\E> or thrown over by another C<\U> or C<\L>: =end original C<\L> �� C<\U> �ϡ�C<\E> �ǽ�ü����뤫���̤� C<\U> �� C<\L> �� ��񤭤����ޤǡ���ʸ����ʸ�����Ѵ����뤳�Ȥ򼨤��ޤ�: =begin original $x = "This word is in lower case:\L SHOUT\E"; $x =~ /shout/; # matches $x = "I STILL KEYPUNCH CARDS FOR MY 360" $x =~ /\Ukeypunch/; # matches punch card string =end original $x = "This word is in lower case:\L SHOUT\E"; $x =~ /shout/; # �ޥå��󥰤��� $x = "I STILL KEYPUNCH CARDS FOR MY 360" $x =~ /\Ukeypunch/; # �ѥ��������ʸ����˥ޥå��󥰤��� =begin original If there is no C<\E>, case is converted until the end of the string. The regexps C<\L\u$word> or C<\u\L$word> convert the first character of C<$word> to uppercase and the rest of the characters to lowercase. =end original C<\E> ���ʤ����ˤϡ��羮ʸ�����Ѵ���ʸ����ν�ü�ޤǹԤ��ޤ��� C<\L\u$word> �� C<\u\L$word> �� C<$word> �κǽ��ʸ������ʸ���ؤ��Ѵ����� �Ĥ��ʸ���Ͼ�ʸ���ˤ��ޤ��� =begin original Control characters can be escaped with C<\c>, so that a control-Z character would be matched with C<\cZ>. The escape sequence C<\Q>...C<\E> quotes, or protects most non-alphabetic characters. For instance, =end original ����ʸ���� C<\c> ��Ȥäƥ��������פ��뤳�Ȥ��Ǥ��ޤ�; �Ǥ����顢 control-Z ʸ���� C<\cZ> �˥ޥå��󥰤��ޤ��� C<\Q>...C<\E> �Ȥ������������ץ������󥹤�����ʬ���󥢥�ե��٥å�ʸ���� �������Ȥޤ��ϥץ��ƥ��Ȥ��ޤ��� ���Ȥ��� $x = "\QThat !^*&%~& cat!"; $x =~ /\Q!^*&%~&\E/; # check for rough language =begin original It does not protect C<'$'> or C<'@'>, so that variables can still be substituted. =end original ����� C<'$'> �� C<'@'> ���ݸ�ʤ��Τǡ��ѿ����ִ��ϹԤ��ޤ��� =begin original C<\Q>, C<\L>, C<\l>, C<\U>, C<\u> and C<\E> are actually part of double-quotish syntax, and not part of regexp syntax proper. They will work if they appear in a regular expression embedded directly in a program, but not when contained in a string that is interpolated in a pattern. =end original C<\Q>, C<\L>, C<\l>, C<\U>, C<\u>, C<\E> �ϼºݤˤϥ��֥륯��������ʸˡ�� �����ǡ�����ɽ��ʸˡ�ΰ����ǤϤ���ޤ��� �����ϥץ�������������ɽ����ľ�������ޤ�Ƥ������ư��ޤ����� �ѥ��������Ÿ�����줿ʸ����˴ޤޤ�Ƥ�����ˤ�ư��ޤ��� =begin original Perl regexps can handle more than just the standard ASCII character set. Perl supports I, a standard for representing the alphabets from virtually all of the world's written languages, and a host of symbols. Perl's text strings are Unicode strings, so they can contain characters with a value (codepoint or character number) higher than 255. =end original Perl ������ɽ����ɸ��� ASCII ʸ�����åȤ�Ķ���������򤹤뤳�Ȥ��Ǥ��ޤ��� Perl �ϸ��ߤϻ��¾����������Ƥθ���Υ���ե��٥åȤ�ɽ������ɸ��Ǥ��� I �򥵥ݡ��Ȥ��Ƥ��ޤ��� Perl �Υƥ�����ʸ����� Unicode ʸ����ǡ�255 �ʾ����(�����ɥݥ���Ȥޤ��� ʸ���ֹ�)�����ʸ����ޤߤޤ��� =begin original What does this mean for regexps? Well, regexp users don't need to know much about Perl's internal representation of strings. But they do need to know 1) how to represent Unicode characters in a regexp and 2) that a matching operation will treat the string to be searched as a sequence of characters, not bytes. The answer to 1) is that Unicode characters greater than C are represented using the C<\x{hex}> notation, because C<\x>I (without curly braces and I are two hex digits) doesn't go further than 255. (Starting in Perl 5.14, if you're an octal fan, you can also use C<\o{oct}>.) =end original ���Τ��Ȥ�����ɽ���˵ڤܤ��ƶ���? ����������ɽ���桼������ perl �Ǥ�ʸ���������ɽ�����Τ�ɬ�פϤ���ޤ��� ���������ΤäƤ����٤����Ȥ�����ޤ�; 1) ����ɽ���ˤ����� Unicode ʸ����ɤΤ褦��ɽ�����뤫 2) �ޥå������Х�����ǤϤʤ���Unicode ʸ����Ȥ��ư����Ȥ������ȤǤ��� 1)���Ф��������� C ��ۤ��� Unicode ʸ���� C<\x{hex}> ɽ���� �Ȥä�ɽ�������������Ȥ������ȤǤ�; �ʤ��ʤ顢C<\x>I ɽ��(�椫�ä��ʤ��� I ����Ĥ� 16 �ʿ�) �� 255 �� Ķ���ʤ�����Ǥ��� (Perl 5.14 ���顢8 �ʿ������ߤʤ顢C<\o{oct}> ��Ȥ��ޤ���) /\x{263a}/; # match a Unicode smiley face :) =begin original B: In Perl 5.6.0 it used to be that one needed to say C to use any Unicode features. This is no more the case: for almost all Unicode processing, the explicit C pragma is not needed. (The only case where it matters is if your Perl script is in Unicode and encoded in UTF-8, then an explicit C is needed.) =end original B<����>: Perl 5.6.0 �Ǥϲ�������� Unicode ������Ȥ��Ȥ��ˤ� C �� �������ɬ�פ�����ޤ����� ����ϸ��ߤǤϤ��ƤϤޤ�ޤ���: �ۤȤ�ɤ��٤Ƥ� Unicode �����ˤ����Ƥϡ� C �ץ饰�ޤ�ɬ�פ���ޤ��� (���줬��̣����Ĥ�����ĤΥ������ϡ� ���ʤ��� Perl ������ץȤ� Unicode �ǽ񤫤�Ƥ��ơ����Ĥ��줬 UTF-8 �� ���󥳡��ǥ��󥰤���Ƥ�����ǡ����ΤȤ����ۤ� C ����ꤹ��ɬ�פ�����ޤ���) =begin original Figuring out the hexadecimal sequence of a Unicode character you want or deciphering someone else's hexadecimal Unicode regexp is about as much fun as programming in machine code. So another way to specify Unicode characters is to use the I escape sequence C<\N{I}>. I is a name for the Unicode character, as specified in the Unicode standard. For instance, if we wanted to represent or match the astrological sign for the planet Mercury, we could use =end original ���ʤ���ɬ�פ� Unicode ʸ���� 16 �ʿ���ɽ�����뤳�Ȥ䡢�̤�ï���� 16 ��ɽ���� Unicode ����ɽ������ɤ��뤳�Ȥϡ�������� �ץ�����ߥ󥰤��뤳�Ȥ�ڤ��फ�Τ褦�Ǥ��� �Ǥ����顢Unicode ʸ������ꤹ���̤���ˡ�Ȥ��� C<\N{I}> �Τ褦�� I<̾���դ�ʸ��> ���������ץ������󥹤�Ȥ���Τ�����ޤ��� C �� Unicode ʸ�����Ф���̾���Ǥ��äơ�Unicode standard �� �������Ƥ����ΤǤ��� ���Ȥ��С�������ɽ�������ѵ����ɽ������ޥå��󥰤����뤿��� �ʲ��Τ褦�ˤ��ޤ� =begin original $x = "abc\N{MERCURY}def"; $x =~ /\N{MERCURY}/; # matches =end original $x = "abc\N{MERCURY}def"; $x =~ /\N{MERCURY}/; # �ޥå��� =begin original One can also use "short" names: =end original ��û����̾����Ȥ����Ȥ�Ǥ��ޤ�: print "\N{GREEK SMALL LETTER SIGMA} is called sigma.\n"; print "\N{greek:Sigma} is an upper-case sigma.\n"; =begin original You can also restrict names to a certain alphabet by specifying the L pragma: =end original L �ץ饰�ޤ���ꤹ�뤳�Ȥ�̾��������Υ���ե��٥åȤ� ���¤��뤳�Ȥ�Ǥ��ޤ�: use charnames qw(greek); print "\N{sigma} is Greek sigma\n"; =begin original An index of character names is available on-line from the Unicode Consortium, L; explanatory material with links to other resources at L. =end original ʸ��̾�ΰ����� Unicode Consortium �� L ���饪��饤��� ���Ѳ�ǽ�Ǥ�; ����¾�Υ꥽�����ؤΥ�󥯤�ޤ������˴ؤ������� L �ˤ���ޤ��� =begin original The answer to requirement 2) is that a regexp (mostly) uses Unicode characters. The "mostly" is for messy backward compatibility reasons, but starting in Perl 5.14, any regexp compiled in the scope of a C (which is automatically turned on within the scope of a C or higher) will turn that "mostly" into "always". If you want to handle Unicode properly, you should ensure that C<'unicode_strings'> is turned on. Internally, this is encoded to bytes using either UTF-8 or a native 8 bit encoding, depending on the history of the string, but conceptually it is a sequence of characters, not bytes. See L for a tutorial about that. =end original 2) �������ϡ�����ɽ����(�ۤȤ��) Unicode ʸ����Ȥ��Ȥ�����ΤǤ��� �֤ۤȤ�ɡפȤ����ΤϤ����㤰����ʸ����ߴ�������ͳ�Ǥ����� Perl 5.14 ���顢C (����� C �ʾ夬 ͭ���ʥ���������Ǥϼ�ưŪ�˥���ˤʤ�ޤ�) �ˤ�äơ֤ۤȤ�ɡפϡ־�ˡפ� �ʤ�ޤ��� Unicode ��Ŭ�ڤ˰��������ʤ顢C<'unicode_strings'> �򥪥�� ����褦�ˤ���٤��Ǥ��� �����Ǥϡ������ UTF-8 ���ͥ��ƥ��֤� 8 �ӥåȥ��󥳡��ǥ��󥰤�Ȥä� �Х��Ȥǥ��󥳡��ɤ���Ƥޤ�; �ɤ��餫��ʸ���������˰�¸���ޤ�; ����������Ū�ˤϡ�����ϥХ��Ȥ���ǤϤʤ�ʸ������Ǥ��� ����˴ؤ�����塼�ȥꥢ��ˤĤ��Ƥ� L �򻲾Ȥ��Ƥ��������� =begin original Let us now discuss Unicode character classes, most usually called "character properties". These are represented by the C<\p{I}> escape sequence. The negation of this is C<\P{I}>. For example, to match lower and uppercase characters, =end original �ۤȤ�ɤξ���ʸ�������פȸƤФ�롢Unicode ʸ�����饹�ˤĤ��ƽҤ٤ޤ��礦�� ������ C<\p{I}> ���������ץ������󥹤�ɽ����ޤ��� ��������� C<\P{I}> �Ǥ��� ���Ȥ��о�ʸ������ʸ����ʸ���˥ޥå��󥰤�����ˤϡ� =begin original $x = "BOB"; $x =~ /^\p{IsUpper}/; # matches, uppercase char class $x =~ /^\P{IsUpper}/; # doesn't match, char class sans uppercase $x =~ /^\p{IsLower}/; # doesn't match, lowercase char class $x =~ /^\P{IsLower}/; # matches, char class sans lowercase =end original $x = "BOB"; $x =~ /^\p{IsUpper}/; # �ޥå��󥰤���; ��ʸ����ʸ�����饹 $x =~ /^\P{IsUpper}/; # �ޥå��󥰤��ʤ�; ʸ�����饹����ʸ���ʳ� $x =~ /^\p{IsLower}/; # �ޥå��󥰤��ʤ�; ��ʸ����ʸ�����饹 $x =~ /^\P{IsLower}/; # �ޥå��󥰤���; ʸ�����饹�Ͼ�ʸ���ʳ� =begin original (The "C" is optional.) =end original ("C" �ϥ��ץ����Ǥ���) =begin original There are many, many Unicode character properties. For the full list see L. Most of them have synonyms with shorter names, also listed there. Some synonyms are a single character. For these, you can drop the braces. For instance, C<\pM> is the same thing as C<\p{Mark}>, meaning things like accent marks. =end original Unicode ʸ�������ϤȤƤ�ȤƤ⤿�����󤢤�ޤ��� �����ʰ����ˤĤ��Ƥ� L �򻲾Ȥ��Ƥ��������� �����ΤۤȤ�ɤϤ��û��̾����Ʊ����ǡ��������������Ƥ��ޤ��� ��ʸ����Ʊ����⤢��ޤ��� �����ˤĤ��Ƥϡ��椫�ä����ά�Ǥ��ޤ��� �㤨�С�C<\pM> �� C<\p{Mark}> ��Ʊ�����Ȥǡ���������ȵ���Τ褦�ʤ�Τ� ��̣���ޤ��� =begin original The Unicode C<\p{Script}> and C<\p{Script_Extensions}> properties are used to categorize every Unicode character into the language script it is written in. (C is an improved version of C