opencv 中的图像腐蚀cv2.erode()

本文介绍了一种通过图像腐蚀和高斯模糊结合的方法,有效增强图像色彩对比度,提高色彩追踪准确性,减少颜色干扰。使用Python的OpenCV库实现图像处理,通过调整腐蚀迭代次数控制模糊程度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import cv2
import numpy as np
img = cv2.imread('Test.jpg')
img_erode = cv2.erode(img,None,iterations=5)
#iteration的值越高,模糊程度(腐蚀程度)就越高 呈正相关关系
cv2.imshow('oo',img_erode) #腐蚀图像
cv2.imshow('normal',img)
cv2.waitKey()

使用场景:
图像腐蚀 加上高斯模糊 就可以使得图像的色彩更加突出
可以是色彩追踪更加精准,少了很多的颜色干扰

对比图如下
在这里插入图片描述

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值