机器学习(Machine Learning)
是人工智能(Artificial Intelligence, AI)的一个分支,它使计算机系统能够利用数据来提高性能,而无需进行明确的编程。机器学习的核心在于让机器通过学习数据的特征和模式来做出决策或预测。
机器学习分类
监督学习(Supervised Learning)
在这种学习中,算法从标记的训练数据中学习,并尝试对新的未知数据做出预测或决策。
常见的监督学习算法包括线性回归、逻辑回归、支持向量机(SVM)、决策树、随机森林和神经网络
。
无监督学习(Unsupervised Learning)
无监督学习涉及无标签数据,算法试图找到数据中的结构和模式。
聚类(如K-means、层次聚类)和降维(如主成分分析PCA)是无监督学习的例子。
半监督学习(Semi-supervised Learning)
结合了少量标记数据和大量未标记数据进行学习。
强化学习(Reinforcement Learning)
通过与环境的交互来学习,算法(通常称为智能体)通过奖励和惩罚来学习如何做出最优决策。
强化学习在游戏、机器人控制和推荐系统中有广泛应用。