【知识图谱】实践篇——基于医疗知识图谱的问答系统实践(Part3):基于规则的问题分类

本文是知识图谱在医疗问答系统实践的第三部分,主要介绍如何基于规则对问题进行分类。在缺乏语料标注的情况下,通过实体数据导出、否定词库和ahocorasick包实现快速匹配,支持多种类别问题的识别。效果测试显示基本符合预期,也可结合深度学习提升分类效果,但需要大量标注数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前序文章:

  1. 【知识图谱】实践篇——基于医疗知识图谱的问答系统实践(Part1):项目介绍与环境准备
  2. 【知识图谱】实践篇——基于医疗知识图谱的问答系统实践(Part2):图谱数据准备与导入

背景

基于前面的章节,我们可以认为当前已经有了一个可以提供关于医疗知识的问答知识库。在进行pipline方式问答任务时,接到问题后,通常就是将问题进行分类,以作精细化的处理与回答。这个问题分类通常也被称为意图识别。对于意图识别获问题分类来说,本质上就是对文本进行分类,可以使用传统的机器学习算法以及深度学习算法来处理该问题,但是在缺乏语料标注的情况下,使用规则可能是最好的方式。原项目就是如此。

基于规则的问题分类

在知识图谱数据入库的模块中提供了实体数据导出功能,导出的数据即为一些实体数据,除此之外源代码中还提供了一些否定词deny.txt,我也将该文件放到dict文件夹下。这部分都是基于规则进行分类的特征词。问题的问题主要是接下来的对应类别的问题解析,已经问题搜索做准备。

下面就开始设计问题分类的类。KGQAMedicine\question_classify\rul

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

皮皮AI记

好好学习,天天向上

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值