Paper:https://arxiv.org/abs/2505.14059
Source code: https://github.com/bytedance/Dolphin
作者机构:字节跳动
背景
业务场景
企业数据大多数都以文本、图片、扫描件、电子表格、在线文档、邮件等文档的形式存在,例如:PDF文档(论文、财报等)、发票、收据等等,难以流通和处理,大量有价值的信息都被锁定在非结构化的文档中,无法充分发挥出数据价值,此外不同类型的文档包含的内容,以及内容展示形式也千差万别,这为非结构数据结构化进程增加了更多的不确定性和挑战。
相关工作
当前主流的文档解析主要是两个大的方向,
- Integration-based Document Parsing,这种解决方案整合了多个特有的模型于整个处理的pipeline中,例如:通过版面分析去识别表格,公式等,然后再使用对应的模型做相关的处理,主要的缺陷是:在系统复杂性、跨模型协调和对复杂文档布局的理解有限。
- Autoregressive Document Parsing,这种方案利用视觉语言模型通过自回归解码直接生成结构化的结果。其分为两种类型:
- General VLMs,这些模型受益于对不同视觉数据的大规模预训练,表现出强大的零样本能力。然而,它们在处理效率、专门的元素识别和布局结构保存方面经常面临挑战,特别是在处理具有复杂布局的长文档时。
- Expert VLMs,这些模型是专门为文档解析或理解任务设计和训练的。Dolphin就是这种类型。
方法论
该模型的处理范围是两阶段文档图像解析,如下图:
推理样例: