目录
4. 上下文拼接(Context Augmentation)
一、RAG 是什么?
RAG,全称 Retrieval-Augmented Generation,中文翻译为“检索增强生成”,是一种将 信息检索(Retrieval) 和 自然语言生成(NLG) 结合的 AI 技术方案。
简单来说,RAG 就是让大语言模型(LLM)在生成回答前,先去查资料,再根据检索到的信息作答,以保证回答的准确性与实时性。
二、为什么需要 RAG?
大语言模型(如ChatGPT、Claude、文心一言)虽然强大,但存在两个核心问题:
-
知识滞后:模型训练数据截止到某个时间点,无法掌握最新信息。
-
幻觉问题(Hallucination):模型有时会编造不存在的事实,导致输出错误答案。
RAG 通过实时检索外部知识库,将“记忆”与“实时数据”结合,大幅提升回答的真实性与可靠性。
三、RAG 的工作原理
1. 用户提问(Query)
-
用户输入一个问题,例如:“OpenAI 2025 年发布了哪些新产品?”
2. 向量化查询(Query Embedding)
-
系统将用户提问转换成高维向量(如 BERT Embedding)。
3. 检索(Retrieval)
-
使用 向量数据库(如 Milvus、FAISS、Weaviate),从知识库中找到与问题语义最相近的文档片段。
4. 上下文拼接(Context Augmentation)
-
将检索到的内容与用户提问一起拼接成 Prompt(提示词),喂给大模型。
5. LLM 生成回答(Generation)
-
大语言模型根据补充的知识背景生成更准确、更可信的答案。
6. 返回结果
-
用户获得经过“资料查证”的高质量回答。
四、RAG 的优势
优势点 | 说明 |
---|---|
动态知识更新 | 知识库随时可更新,回答实时性强 |
减少幻觉 | 有数据支撑,降低模型“胡说八道”的概率 |
可控性强 | 知识库范围可自定义,适应企业业务场景 |
计算资源节省 | 无需频繁微调模型,依赖检索补充信息 |
五、RAG 的典型应用场景
-
企业内部知识问答系统
-
员工问:报销流程是怎样的? → 检索公司知识库 → 精准回答。
-
-
智能客服/工单系统
-
客户问题匹配FAQ文档,辅助客服提升响应效率。
-
-
金融、法律、医疗等高专业性问答
-
在特定专业知识库中检索,保证内容准确与合规。
-
-
搜索增强的AI助手
-
实时抓取新闻、数据库文档,为AI助手提供最新答案。
-
六、RAG 技术栈(核心组件)
模块 | 工具/技术 |
向量化模型 | BERT、Sentence-BERT、OpenAI Embeddings |
向量数据库 | Milvus、FAISS、Weaviate、Qdrant |
大语言模型 | ChatGPT、LLaMA、Qwen、Claude |
上下文管理 | Prompt拼接、Token裁剪、Chunking |
七、RAG 与微调的区别
维度 | RAG | 模型微调 |
更新知识 | 快速替换/新增文档 | 需重新训练模型 |
资源消耗 | 检索消耗小 | 训练耗时耗算力 |
适用场景 | 知识库灵活、实时性强 | 专业场景、高精度生成 |
八、RAG 的挑战
-
检索结果相关性:检索的文档是否真的与问题相关,影响生成效果。
-
上下文长度限制:模型输入Token有限,过多资料可能需要裁剪与重组。
-
多轮对话记忆:如何在RAG中保持对话上下文连贯性。
九、未来发展方向
-
多模态RAG(图像、音频检索增强)
-
Hybrid Search(向量+关键词混合检索)
-
自动化RAG知识库构建(无痛接入企业文档)
-
RAG与个性化推荐结合
RAG 已成为企业构建“专属智能助手”与“高可信问答系统”的最佳实践路径。