RAG 检索(Retrieval-Augmented Generation)深入浅出讲解

目录

一、RAG 是什么?

二、为什么需要 RAG?

三、RAG 的工作原理

1. 用户提问(Query)

2. 向量化查询(Query Embedding)

3. 检索(Retrieval)

4. 上下文拼接(Context Augmentation)

5. LLM 生成回答(Generation)

6. 返回结果

四、RAG 的优势

五、RAG 的典型应用场景

六、RAG 技术栈(核心组件)

七、RAG 与微调的区别

八、RAG 的挑战

九、未来发展方向


一、RAG 是什么?

RAG,全称 Retrieval-Augmented Generation,中文翻译为“检索增强生成”,是一种将 信息检索(Retrieval)自然语言生成(NLG) 结合的 AI 技术方案。

简单来说,RAG 就是让大语言模型(LLM)在生成回答前,先去查资料,再根据检索到的信息作答,以保证回答的准确性与实时性。


二、为什么需要 RAG?

大语言模型(如ChatGPT、Claude、文心一言)虽然强大,但存在两个核心问题:

  1. 知识滞后:模型训练数据截止到某个时间点,无法掌握最新信息。

  2. 幻觉问题(Hallucination):模型有时会编造不存在的事实,导致输出错误答案。

RAG 通过实时检索外部知识库,将“记忆”与“实时数据”结合,大幅提升回答的真实性与可靠性。


三、RAG 的工作原理

1. 用户提问(Query)

  • 用户输入一个问题,例如:“OpenAI 2025 年发布了哪些新产品?”

2. 向量化查询(Query Embedding)

  • 系统将用户提问转换成高维向量(如 BERT Embedding)。

3. 检索(Retrieval)

  • 使用 向量数据库(如 Milvus、FAISS、Weaviate),从知识库中找到与问题语义最相近的文档片段。

4. 上下文拼接(Context Augmentation)

  • 将检索到的内容与用户提问一起拼接成 Prompt(提示词),喂给大模型。

5. LLM 生成回答(Generation)

  • 大语言模型根据补充的知识背景生成更准确、更可信的答案。

6. 返回结果

  • 用户获得经过“资料查证”的高质量回答。


四、RAG 的优势

优势点说明
动态知识更新知识库随时可更新,回答实时性强
减少幻觉有数据支撑,降低模型“胡说八道”的概率
可控性强知识库范围可自定义,适应企业业务场景
计算资源节省无需频繁微调模型,依赖检索补充信息

五、RAG 的典型应用场景

  1. 企业内部知识问答系统

    • 员工问:报销流程是怎样的? → 检索公司知识库 → 精准回答。

  2. 智能客服/工单系统

    • 客户问题匹配FAQ文档,辅助客服提升响应效率。

  3. 金融、法律、医疗等高专业性问答

    • 在特定专业知识库中检索,保证内容准确与合规。

  4. 搜索增强的AI助手

    • 实时抓取新闻、数据库文档,为AI助手提供最新答案。


六、RAG 技术栈(核心组件)

模块工具/技术
向量化模型BERT、Sentence-BERT、OpenAI Embeddings
向量数据库Milvus、FAISS、Weaviate、Qdrant
大语言模型ChatGPT、LLaMA、Qwen、Claude
上下文管理Prompt拼接、Token裁剪、Chunking

七、RAG 与微调的区别

维度RAG模型微调
更新知识快速替换/新增文档需重新训练模型
资源消耗检索消耗小训练耗时耗算力
适用场景知识库灵活、实时性强专业场景、高精度生成

八、RAG 的挑战

  1. 检索结果相关性:检索的文档是否真的与问题相关,影响生成效果。

  2. 上下文长度限制:模型输入Token有限,过多资料可能需要裁剪与重组。

  3. 多轮对话记忆:如何在RAG中保持对话上下文连贯性。


九、未来发展方向

  • 多模态RAG(图像、音频检索增强)

  • Hybrid Search(向量+关键词混合检索)

  • 自动化RAG知识库构建(无痛接入企业文档)

  • RAG与个性化推荐结合

RAG 已成为企业构建“专属智能助手”与“高可信问答系统”的最佳实践路径。

### RAG检索增强生成)技术概述 #### 定义与目标 检索增强生成 (Retrieval-Augmented Generation, RAG) 是一种优化大型语言模型输出的方法,该方法使模型可以在生成响应前引用训练数据源之外的权威知识库[^1]。此过程旨在提高模型对于特定查询或任务的理解能力,尤其是在涉及广泛背景知识的需求下。 #### 架构特点 RAG 结合了检索技术和生成技术的优势,形成了一种新型的人工智能模型架构。具体来说,这类模型会从庞大的文档集合中动态检索相关信息以辅助文本生成,进而提升输出的质量和准确性[^2]。 #### 动态知识利用 值得注意的是,RAG 的一大特色就是可以实时访问最新的外部资料,这意味着即便是在未曾接受过专门训练的主题上,也能够给出深入浅出的回答。这得益于其可以从大规模的知识库中获取最新且相关的信息片段作为输入的一部分[^4]。 ### 工作原理详解 当接收到用户请求时,RAG 首先执行一次高效的检索操作,在预先构建好的数据库里查找最有可能帮助解决问题的内容摘要;随后基于这些找到的数据点来进行最终答案的合成工作。整个过程中既包含了对已有事实的学习又融入了即时获得的新见解,使得回复更加精准可靠[^3]。 ```python def rag_process(query): retrieved_docs = retrieve_relevant_documents(query) generated_response = generate_answer(retrieved_docs) return generated_response ``` 上述伪代码展示了简化版的 RAG 处理逻辑:接收查询 -> 检索相关文件 -> 生成回应。 ### 应用场景举例 由于具备强大的上下文理解和信息整合能力,RAG 特别适合应用于那些依赖于广博专业知识领域内的问答系统开发之中。例如医疗咨询平台、法律服务机器人以及教育辅导工具等都可以从中受益匪浅。此外,在企业内部知识管理方面也有着广阔的应用前景,比如客服中心自动化应答解决方案等等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张3蜂

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值