- 博客(254)
- 资源 (11)
- 问答 (1)
- 收藏
- 关注
原创 可直接运行的 Playwright C# 自动化模板
摘要:这是一个基于Playwright和Quartz.NET的C#自动化任务解决方案,包含三个核心功能:社保申报(自动登录+Excel上传)、数据查询导出(自动登录+查询+下载Excel)和文章发布(自动登录+内容发布)。系统采用分层架构设计,包含任务调度、配置文件管理、日志记录和截图功能,并预留了验证码识别接口。通过appsettings.json配置账号信息和执行路径,使用Quartz.NET实现定时任务调度(如每月5号报社保)。项目还支持扩展OCR识别、Excel处理和AI内容生成等功能,适用于日常办
2025-08-09 19:28:26
319
原创 Web自动化技术选择
摘要:针对社保自动化工具需求,推荐采用C#为主、Python为辅的混合技术方案。核心自动化使用Playwright for.NET实现社保系统登录、表单填写和Excel上传下载(优于Selenium的稳定性和兼容性)。产品化采用分层架构:WPF/Blazor UI层+Quartz.NET任务调度+Playwright执行层+数据库/Excel数据层。Python用于补充OCR验证码识别等场景。该方案兼顾稳定性(自动等待机制)、易用性(可打包EXE)和扩展性(支持云端部署),能完整覆盖社保报表处理、数据查询导
2025-08-09 19:13:36
514
原创 支付宝「安全发-甲方直发」架构详解及与「安全发ISV模式」对比
│ │ 企业ERP系统 │───────┐ │。│ │ 企业财务系统 │───────►│ 内部审批流 │ │。│ ├─ 多平台数据聚合 │ └───────────────┬───────┘。│ ├─ 业务逻辑引擎 │◄────►│ (资金分发/校验) │。│ ├─ 智能校验(账号/税务) │◄───►│ ├─ 完税凭证生成 │。
2025-08-08 20:45:33
896
原创 「安全发」ISV对接支付宝+小猎系统
│ │ (安全发API) │◄─────►│ (人力系统API)│◄─────►│ (分账/计税) │ │。│ │ (账簿开设/同步) │◄─────►│ (完税凭证) │◄─────►│ (资金流向) │ │。资金流───────────────────┘ │。税务数据流───────────────────────────────────┘。:ISV在税源地财政系统为每个甲方开设独立记账本。
2025-08-08 20:22:44
960
原创 idea开发工具中git如何忽略编译文件build、gradle的文件?
只能**忽略未被跟踪(untracked)**的文件或目录。目录下的所有内容,避免每次编译后出现变更提示。或其中的子文件,说明已经被 Git 跟踪了。你可以通过 .gitignore。如果你有多个模块都想忽略它们的。你只需要在 Git 根目录的。中,Git 会完全忽略整个。这会忽略项目下所有子目录中的。在 Git 根目录下(即。来让 Git 忽略掉。
2025-08-07 20:58:25
522
原创 SQL Server 字段类型选型指南:什么数据用什么字段
SQL Server 数据库字段设计时,“数据类型”与“字段长度”影响着性能、存储与数据质量。尽量精确匹配业务需求,避免过度设计与浪费空间,同时兼顾查询性能与后续扩展性。
2025-07-25 09:37:35
920
原创 大数据建设与湖仓一体化
大数据建设是指企业或机构围绕“数据规模大、类型多、处理复杂”的特点,规划与搭建能够支撑数据采集、存储、治理、分析、应用的全流程数据体系。通俗点讲,就是如何“把数据收起来、管好它、用起来”。湖仓一体化(Lakehouse Architecture)是一种将数据湖的灵活存储与数据仓库的高性能分析能力融为一体的新型数据架构。核心理念是:让所有数据(结构化、半结构化、非结构化)统一存储于数据湖。在数据湖之上构建数据仓库级别的管理与分析能力。简单来说,就是“在数据湖里建仓库”。
2025-07-24 13:40:27
587
原创 数据库分布式开发实践(深入浅出讲解)
分布式数据库是指将数据分散存储在多个物理节点(服务器)上,但对外表现为一个“统一数据库”的系统架构。与传统“单机数据库”不同,分布式数据库通过“横向扩展”实现大规模数据存储与高并发访问能力,广泛应用于互联网、电商、金融等场景。分片设计先行:分片策略一旦定下,后期修改代价极高。高频查询避免跨分片:设计路由策略让热点数据尽量命中单分片。异步一致性机制优化事务性能:通过MQ、补偿机制保障一致性。借助分布式数据库生态工具:如TiDB的BR备份工具、ShardingSphere的SQL审计功能。做好扩容与容灾预案。
2025-07-24 13:31:37
828
原创 数据资产管理(Data Asset Management)深入浅出讲解
将数据像“资产”一样进行系统化管理、运营与价值挖掘的全过程活动。简单来说,数据资产管理的核心理念就是:把数据当作“企业的核心资产”去管理,像管人、管钱、管设备一样去管数据。数据资产管理是数字时代企业实现“数据变现”与“智能运营”的核心能力。它不仅仅是数据治理的延伸,更是将数据视为“生产力资产”去管理、评估与变现的系统工程。数据资产管理水平,将直接决定企业数字化转型的成败与数据经济的参与能力。
2025-07-24 12:07:48
820
原创 数据要素(Data Element)深入浅出讲解
数据要素”是指在数字经济时代,数据成为继土地、劳动力、资本、技术之外的“第五大生产要素”。可以被采集、传输、存储、加工、应用,并创造价值的数据资源。就像土地能种粮食、资本能投资企业一样,数据能为经济活动赋能、提效、降本、创新。“数据要素”已成为驱动数字经济增长的关键引擎。掌握数据要素流通、加工与应用的能力,将决定企业与行业的核心竞争力。未来,谁能实现数据资源的高效流通与智能利用,谁就能在数字经济浪潮中占据主动。
2025-07-24 12:06:08
584
原创 RAG 检索(Retrieval-Augmented Generation)深入浅出讲解
RAG 通过实时检索外部知识库,将“记忆”与“实时数据”结合,大幅提升回答的真实性与可靠性。RAG 已成为企业构建“专属智能助手”与“高可信问答系统”的最佳实践路径。将检索到的内容与用户提问一起拼接成 Prompt(提示词),喂给大模型。→ 检索公司知识库 → 精准回答。简单来说,RAG 就是让大语言模型(LLM)在生成回答前,:模型有时会编造不存在的事实,导致输出错误答案。:检索的文档是否真的与问题相关,影响生成效果。,从知识库中找到与问题语义最相近的文档片段。,中文翻译为“检索增强生成”,是一种将。
2025-07-24 12:04:40
829
原创 向量数据库(Vector Database)深入浅出讲解
向量数据库是一种专门用来存储、检索和管理“向量数据(Vector Data)”的数据库。向量是一种多维的数值数组,通常用来表达图片、文本、音频、视频等非结构化数据在高维空间中的“特征表示”。基于向量之间的“相似度”进行快速检索。
2025-07-24 12:01:38
532
原创 开源的可视化的审批流开发方案,推荐最好的3种
开源可视化审批流开发方案推荐 目前成熟的开源工作流引擎包括: Flowable:基于BPMN2.0标准,提供可视化建模(FlowableModeler),支持复杂企业审批流,适合SpringBoot微服务集成。 Camunda Platform 8:企业级流程自动化引擎,新版Zeebe性能强,支持云原生架构,适用于高并发审批流。 Node-RED:基于Node.js的低代码工具,适合快速搭建轻量级审批流,支持拖拽式流程设计。 选型建议: 企业复杂流程:Flowable或Camunda 快速轻量开发:Node
2025-07-24 10:50:35
434
原创 揭秘OSI模型:一封信的七段旅程
层级名称比喻关键词第七层应用层你决定写信给谁,说什么浏览器、微信第六层表示层翻译语言、格式转换、美化信纸加密、压缩、编码第五层会话层和朋友建立一次对话会话保持、登录状态第四层传输层分页编号、确保顺序、确认收到TCP、UDP第三层网络层决定送信路线,找到目标城市IP、路由器第二层数据链路层信装进邮袋,写上邮差编号MAC地址、以太网第一层物理层骑车、坐飞机,把信从你家送出去电信号、光信号OSI 模型就像一部严谨又分工明确的邮政系统。
2025-05-22 22:02:31
838
原创 Docker Compose 的安装方法
Docker Compose V2 与旧版 V1 命令兼容,但建议使用 docker compose(集成到 Docker CLI)而非独立工具 docker-compose 54。若 Docker 镜像拉取缓慢,可修改 Docker 配置文件 /etc/docker/daemon.json,添加国内镜像源(如阿里云、中科大等)517。将文件上传至服务器 /usr/local/bin 目录,重命名为 docker-compose,再执行权限设置和验证步骤 32。方法 1:通过官方脚本安装(推荐)
2025-05-14 14:38:37
2471
原创 deepseek-coder-6.7b-instruct安装与体验-success
【代码】deepseek-coder-6.7b-instruct安装与体验。
2025-05-12 13:46:02
322
原创 深度解析DeepSeek-Coder-6.7B-Instruct:代码世界的“瑞士军刀“如何炼成
{"code": "for i in range(100000): process(i)", "label": "性能-循环优化"}这种设计使得在代码质检场景中,模型能像4S店的故障诊断仪一样,同时检测发动机(逻辑错误)、刹车系统(安全漏洞)和车载电脑(规范问题)。{"code": "if user.is_admin: delete_all()", "label": "高危-权限漏洞"},(代码质检):如同经验丰富的主任医师,通过"望闻问切"(静态分析、动态推理)发现潜在问题。
2025-05-12 11:24:14
811
原创 通义千问Qwen3全维度解析
Qwen3如同"AI领域的混合动力汽车",在性能与成本间取得精妙平衡。个人开发者建议从7B版本起步,企业用户优先考虑14B定制方案,科研机构可探索72B的边界突破。记住:选择模型不是选最贵的,而是选最适合业务场景的"智能引擎"。
2025-04-29 19:34:57
850
原创 CosyVoice 技术全景解析:下一代语音生成模型的革命性突破
在技术与人文的平衡中,CosyVoice 或将成为下一代人机交互的核心基础设施。,突破传统 TTS(Text-to-Speech)模型在个性化和表现力上的局限。:支持 200ms 级延迟的流式语音合成,适用于电话客服等实时场景。:将语音特征压缩至 256 维量子化空间,降低 70% 内存占用。:通过元学习框架实现跨说话人特征解耦,解决小样本过拟合问题。:研究用途完全免费,商业应用需购买许可证($999/月),于 2024 年 12 月正式开源。:实现“声音 NFT”级定制,误差率低于人耳识别阈值。
2025-04-28 10:56:30
1831
原创 Stable Diffusion 技术全景解析与行业竞争力分析
其基于 Latent Diffusion 架构,通过将图像压缩到潜在空间进行扩散过程,大幅降低计算需求,成为首个能在消费级GPU上运行的生成式AI模型。:支持自定义模型(Dreambooth)、插件(如AnimateDiff视频生成):支持骨骼绑定(OpenPose)、景深控制(Depth2Img)编码器(VAE)将图像压缩至潜在空间(Latent Space):TripoSR工具实现文本→3D网格模型(10秒内生成):允许商业修改与二次分发(对比DALL-E的严格限制)
2025-04-27 11:03:22
1068
原创 CogView4 模型全面解析:能力、竞品、部署成本与个人部署建议
CogView4是由智谱 AI(Zhipu AI)推出的一款多模态大模型,专注于文本生成图像(Text-to-Image,T2I)任务。相较于 DALL·E、Stable Diffusion 等国外模型,CogView4 在中文语义理解与汉字图文生成能力上具有显著优势。CogView4 的开源不仅是技术突破,更为中文语义图像生成开辟了新的范式。其在指令跟随、多语种适配、图文一致性方面的优异表现,让它成为国产 AI 模型中极具代表性的一款。
2025-04-25 17:55:44
742
原创 ComfyUI 简介
工具名称模块化程度上手难度资源占用扩展性社区活跃度ComfyUI高中低高高中低中高高InvokeAI中中中中中低低高低低Midjourney无极低云端无高。
2025-04-25 14:10:10
1136
原创 Jupyter Notebook 全面介绍:从原理到实战部署
Jupyter 不仅是数据科学家和研究人员的工作利器,也逐渐成为教育、运维和开发领域的重要工具。随着 JupyterLab、VSCode 集成和 AI 辅助开发工具的发展,Jupyter 的使用门槛越来越低,生态日益丰富。如果你希望我补充一份图文并茂的版本(含架构图、对比图等)、或者想将这篇文章转为 PDF 或 Markdown 发布格式,也可以告诉我,我可以立即帮你生成。
2025-04-25 09:29:20
1093
原创 Janus Pro
模型名称开发公司:DeepSeek(中国杭州)开源许可:MIT 许可,支持商业用途发布平台模型规模:提供 1B 和 7B 参数版本架构特点:采用统一的 Transformer 架构,结合 SigLIP-Large-Patch16-384 编码器,实现图像理解与生成的融合 Janus Pro 作为一款开源的多模态 AI 模型,在性能、灵活性和社区支持方面表现出色,尤其适合需要本地部署和高度定制化的应用场景。
2025-04-24 19:50:16
987
原创 AI文生图模型对比
近年来,文生图(Text-to-Image, T2I)模型在人工智能领域取得了显著进展。本文将从模型开源性、热度、能力、竞品分析、部署成本等多个方面进行详细介绍,并通过图表进行对比分析,帮助您全面了解当前主流的文生图模型。。
2025-04-24 19:43:55
2458
原创 扩散模型(Diffusion Model)详解:原理、发展与应用
近年来,扩散模型在生成式AI领域(如Stable Diffusion、DALL·E 2)表现突出,逐步取代了传统的。:相比GAN,扩散模型推理需多次迭代(但Consistency Models等新方法在改进)。αˉt=∏s=1t(1−βs)αˉt=∏s=1t(1−βs) 是累积噪声因子。:扩散模型+LLM(如Stable Diffusion 3结合语言模型)。过程,逐步对输入数据(如图像)添加高斯噪声,最终使其变成完全随机的噪声。:ControlNet(基于扩散模型的条件控制)。
2025-04-24 19:25:45
1614
原创 请详细说明下面训练阶段的差别: Supervised Fine-Tuning、Reward Modeling、PPO、DPO、KTO、Pre-Training
阶段是否需要标注数据是否训练新模型是否需 reward model优点否(大数据)✅❌学习语言本身SFT✅(人工答案)✅❌教模型完成任务✅(排序)✅✅评估回答好坏PPO✅(排序)✅✅RLHF核心步骤DPO✅(偏好对)✅❌简洁高效KTO✅(偏好对)✅❌稳定度更高。
2025-04-16 20:37:38
1106
原创 通义千问Qwen2.5-Omni-7B多模态部署与全方位体验
这次决定购买安小时付费的服务器,不用的时候释放资源;包月包年利用率低,属实浪费。算力云可用的资源越来越少了,看文章RTX4090可以用,买个RTX4090吧。:可(FP16约14GB显存),支持多模态输入(如图文问答)。:需(显存需求降至~36GB)或(性能下降显著)。由于RTX4090卖完了,所以我买了。
2025-04-16 20:25:31
909
原创 组装一台训练+推理服务器硬件配置建议
目标你的选择显卡2 × RTX 3090 二手 or 1 × A6000 48G内存微调方式支持模型通义 Qwen2.5-7B / 14B预算控制在 16000~22000 元。
2025-04-16 15:32:43
1282
原创 我想自己组装一台服务器,微调大模型通义千问2.5 Omni 72B,但是我是个人购买,资金非常有限,最省的方案
阶段动作✅ 推理用 GGUF + llama.cpp + 4090 加载 14B INT4✅ 微调训练 Qwen2.5-7B-Chat,使用 LoRA / QLoRA❌ 放弃Qwen2.5-Omni-72B 全量微调(显存需求 >160G,不现实)
2025-04-16 15:31:25
1410
解决centos7安装.net8环境依赖的问题
2024-11-28
静态文件放阿里云的oss加载速度很快!为啥很少看到有人把全部的静态资源放到oss?
2022-07-01
TA创建的收藏夹 TA关注的收藏夹
TA关注的人