django 数据表外键 删除时 对应表的数据不删除如何设置

在Django中,如果你想设置一个外键关系,使得在删除主表(父表)的记录时,从表(子表)的记录不会被自动删除,你可以使用on_delete参数来指定外键的行为。默认情况下,Django的外键关系在删除父表记录时会设置为CASCADE,即级联删除。如果你不想在删除父表记录时自动删除子表记录,你可以使用SET_NULL、PROTECT或DO_NOTHING作为on_delete的值。

  1. SET_NULL
    如果你希望在删除父表记录时,将子表中对应的外键字段设置为NULL(前提是该字段允许为空),你可以这样设置:

from django.db import models

class Parent(models.Model):
name = models.CharField(max_length=100)

class Child(models.Model):
parent = models.ForeignKey(Parent, on_delete=models.SET_NULL, null=True)
在这个例子中,如果删除了一个Parent实例,则所有指向该父实例的Child实例中的parent字段将被设置为NULL。

  1. PROTECT
    如果你希望在删除父表记录时阻止删除操作,除非所有相关的子表记录也被删除或设置为其他非空值,你可以使用PROTECT:

class Child(models.Model):
parent = models.ForeignKey(Parent, on_delete=models.PROTECT)
在这种情况下,如果你尝试删除一个父表实例,而存在至少一个指向该父实例的子表实例,Django将抛出一个ProtectedError异常。

  1. DO_NOTHING
    如果你希望在删除父表记录时什么都不做(即不自动删除或更新子表中的记录),你可以使用DO_NOTHING:

class Child(models.Model):
parent = models.ForeignKey(Parent, on_delete=models.DO_NOTHING)
在这种情况下,如果你删除了一个父表实例,Django不会自动处理任何子表记录。你需要手动管理这些子表记录。

注意事项
使用SET_NULL时,确保你的外键字段允许为空(即字段定义中包含null=True)。

使用PROTECT时,确保你的业务逻辑可以处理可能的保护错误。

使用DO_NOTHING时要格外小心,确保你不会意外地留下悬挂的外键引用,这可能导致数据不一致。

选择哪种方式取决于你的具体需求和业务逻辑。通常,在处理外键关系时,考虑到数据完整性和业务规则是非常重要的。

在 Python 中,可以使用 statsmodels 模块中的 OLS 类来进行OLS回归模型的拟合和预测。下面是一个简单的示例代码: ```python import numpy as np import pandas as pd import statsmodels.api as sm # 生成随机数据 np.random.seed(123) X = np.random.rand(100) Y = 2*X + 0.5 + np.random.normal(0, 0.1, 100) # 将数据存放在DataFrame对象中 data = pd.DataFrame({'X': X, 'Y': Y}) # 添加截距项 data = sm.add_constant(data) # 拟合OLS回归模型 model = sm.OLS(data['Y'], data[['const', 'X']]) result = model.fit() # 输出回归结果 print(result.summary()) ``` 在上面的代码中,我们首先生成了一个简单的随机数据集,其中 X 是自变量,Y 是因变量。然后,我们将数据存放在了一个 pandas 的 DataFrame 对象中,并使用 sm.add_constant() 函数添加了截距项。接着,我们使用 sm.OLS() 函数拟合了OLS回归模型,并将结果保存在了 result 变量中。最后,我们使用 result.summary() 方法输出了回归结果的详细信息。 需要注意的是,在使用 statsmodels 进行OLS回归模型拟合,需要显式地添加截距项,否则结果会有偏差。此,我们还可以使用 result.predict() 方法来进行预测,即: ```python # 进行预测 new_data = pd.DataFrame({'X': [0.1, 0.2, 0.3]}) new_data = sm.add_constant(new_data) prediction = result.predict(new_data) # 输出预测结果 print(prediction) ``` 在上面的代码中,我们首先生成了一个新的数据集 new_data,然后使用 result.predict() 方法对其进行预测,并将结果保存在了 prediction 变量中。最后,我们使用 print() 函数输出了预测结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

计算机辅助工程

感谢鼓励!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值