【华为机试真题详解 Python实现】静态扫描最优成本【2023 Q1 | 100分】

文章介绍了华为机试中的一道题目,涉及静态扫描源代码缺陷的成本计算和缓存策略。给定文件标识和大小,目标是求解最小成本。通过对比扫描和缓存的成本,确定最佳方案。示例展示了不同情况下如何权衡一次性扫描和多次扫描加缓存的总费用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言

《华为机试真题详解》专栏含牛客网华为专栏、华为面经试题、华为OD机试真题。

如果您在准备华为的面试,期间有想了解的可以私信我,我会尽可能帮您解答,也可以给您一些建议!

本文解法非最优解(即非性能最优),不能保证通过率。

特别提醒!!!!
注意1:机试为ACM 模式
你的代码需要处理输入输出,input接收输入、print格式化输出

注意2:机试按通过率记分
复杂题目可以考虑暴力破解,再逐步优化,不是运行超时就无法得分,如下,提交结果运行超时,但用例通过率>92.31% , 如果是100分的题目,可以得92.3分。
在这里插入图片描述

题目描述

静态扫描快速识别源代码的缺陷,静态扫描的结果以扫描报告作为输出:

  1. 文件扫描的成本和文件大小相关,如果文件大小为 ,则扫描成本为 N个金币
  2. 扫描报告的缓存成本和文件大小无关,每缓存一个报告需要M个金币
  3. 扫描报告缓存后,后继再碰到该文件则不需要扫描成本,直接获取缓存结果
    给出源代码文件标识序列和文件大小序列,求解采用合理的缓存策略,最少需要的 金币Q

输入描述

第一行为缓存一个报告金币数 M,1 <= M <=100
第二行为文件标识序列: F1,F2,F3…Fn,其中1 <= N <= 10000,1 <= F <=1000
第三行为文件大小序列: S1,S2,S3…Sn,其中1 <= N <= 10000,1 <= S <=10

输出描述

采用合理的缓存策略,需要的最少金币数

示例 1

输入:

5
1 2 2 1 2 3 4
1 1 1 1 1 1 1

输出:

7

说明:
文件大小相同,扫描成本均为1个金币。缓存任意文件均不合算,所以每次都是重新扫描文本,因而最少成本为7金币

示例 2

输入:

5
2 2 2 2 2 5 2 2 2
3 3 3 3 3 1 3 3 3

输出:

9

说明:
2号文件出现了8次,不缓存成本为 3*8=24,扫描加缓存成本共计 3+5=8,显然缓存更优,最优成本为 8+1=9

题目解析

获取文件的方式有两种:
第一种是扫描文件,成本包含扫描文件成本;
第二种是从缓存中读取文件,成本包含一次扫描文件成本 + 缓存文件的成本。

我们只需要获取到每个文本的扫描次数与缓存方案的成本进行比较,单个文件选择最优方案,整体成本即为最优方案(贪婪)。

这个方式再业务中也有很多应用场景,例如:
数据访问优化,对于数据库热点数据的访问,首先从数据库获取数据,生成键值并存储在缓存中,下次再获取该数据时直接从缓存中加载,减少数据获取的延时。

在业务场景中高速缓存的使用成本较高,我们可能需要考虑过期时间、淘汰策略等问题,而这道题目中没有缓存加载顺序,使用限制等说明,所以这道题目中不需要考虑。

在这里插入图片描述

参考代码


while 1:
    try:
        m = int(input())
        fList = list(map(int, input().split()))
        sList = list(map(int, input().split()))

        cache = []
        total = 0
        for i in range(len(fList)):
            if fList[i] in cache:
                continue

            cache.append(fList[i])
            c = fList.count(fList[i])
            total += min(sList[i] * c, sList[i] + m)

        print(total)
    except Exception as e:
        break

或者保存分项

while 1:
    try:
        m = int(input())
        fList = list(map(int, input().split()))
        sList = list(map(int, input().split()))

        cache = {}
        for i in range(len(fList)):
            if fList[i] in cache:
                continue

            c = fList.count(fList[i])
            cache[fList[i]] = min(sList[i] * c, sList[i] + m)

        print(sum(cache.values()))
    except Exception as e:
        import traceback
        print(traceback.print_exc())
        break

最后,如果你有什么样的问题或解题心得,欢迎评论区交流!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不太灵光的程序员

有用的话可以请博主喝杯咖啡续命

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值