Python包管理器 uv替代conda?

有人问:python的包管理器uv可以替代conda吗?

搞数据和算法的把conda当宝贝,其他的场景能替代。

Python的包管理器有很多,pip是原配,uv是后起之秀,conda则主打数据科学。

uv替代pip似乎只是时间问题了,它能做pip所有能做的事,不光可以作为包管理器,还能管理虚拟环境,而且比pip更快。

而且快的不是一丢丢,你随便安装个pandas试试,uv几乎是pip速度的几十倍。

但uv是否能替代conda需要打个问号,因为conda在数据科学领域浸润的太深了,Anaconda、miniconda就是基于conda开发的Python发行版,专门用来用于科学计算和机器学习的开发。


uv虽然比conda更快和轻量化,但conda有3个特点,是uv无法替代的。

1、支持GPU加速项目,且集成CUDA、MKL等非Python依赖

Conda能很方便地部署基于GPU加速的TensorFlow/PyTorch深度学习框架,以及CUDA、MKL环境自动搭建,这点其他包管理器都做不到

conda install pytorch torchvision cudatoolkit=12.1 -c pytorch

2、预编译优化后的数学运算库,矩阵计算分析性能大幅提升

同样安装numpy、scipy,用conda安装的版本性能会比pip、uv安装的强悍很多,因为conda会集成MLK去优化相关计算库的性能,而且也会识别不同 CPU 架构(像是Intel/AMD/ARM)生成优化代码,使得numpy、scipy计算效率大幅提升。

3、跨语言管理

conda支持python、R、julia等多种语言的包管理,对于混合项目的管理更加得心应手。有很多的分析项目比如生物学、工程仿真、金融量化都涉及到混合语言工具库。

所以conda在数学计算、算法开发、科研分析等领域都是有着不可替代的优势,uv很难撼动其位置。

但uv会替代一些conda非专业性的工作,比如通用库的管理、虚拟环境管理等,uv足够的快捷和方便,符合python哲学,也符合人性。

下面是conda包管理和环境管理的一些常用语法,以备查询。

1、包管理:

安装包:conda install <包名>[=版本]

指定镜像源安装:conda install -c <镜像源> <包名>

更新包:conda update <包名>

卸载包:conda remove <包名>

2、环境管理

创建环境:conda create -n <环境名> [python=<版本>] [包名]

克隆环境:conda create --name <新环境名> --clone <原环境名>

激活环境:conda activate <环境名>

删除环境:conda remove --name <环境名> --all

导出环境配置:conda env export > environment.yml

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

朱卫军 AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值