C/C++开发,opencv-ml库学习,K近邻(KNN)应用

本文介绍了K近邻算法(KNN),包括其原理、优缺点及应用实例。还阐述了OpenCV中的KNN算法,可用于分类和回归问题。此外,详细说明了cv::ml::KNearest的应用,如数据集样本准备、KNearest应用、程序编译,并给出main.cpp全代码,以实现手写数字识别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、k近邻算法

1.1 算法简介

1.2 opencv-k近邻算法

二、cv::ml::KNearest应用

2.1 数据集样本准备

2.2 KNearest应用

2.3 程序编译

2.4 main.cpp全代码


一、k近邻算法

1.1 算法简介

        K近邻算法(K-Nearest Neighbor,KNN)基本原理是:

        在特征空间中,如果一个样本附近的K个最近(即特征空间中最邻近)样本的大多数属于某一个类别,则该样本也属于这个类别。具体来说,给定一个训练数据集,对于新的输入实例,KNN算法会在训练数据集中找到与该实例最邻近的K个实例(即K个邻居)。然后,根据这K个邻居的类别进行投票,将票数最多的类别作为新输入实例的预测类别。

        KNN算法的优点包括:

  1. 简单易理解:KNN算法非常直观和简单,易于理解和实现。
  2. 适用于多分类问题:KNN算法可以很容易地应用于多分类问题。
  3. 适用于非线性数据:KNN算法对于非线性数据具有良好的适应性。
  4. 无需训练:KNN算法属于懒惰学习(lazy learning),不需要训练过程,节省了模型训练时间。

        KNN算法也存在一些缺点:

  1. 需要大量内存:KNN算法需要存储所有训练数据,因此在处理大规模数据集时需要大量内存。
  2. 计算复杂度高:当训练集很大时,KNN算法需要计算测试样本与所有训练样本之间的距离,计算复杂度较高。
  3. 预测时间长:由于需要计算测试样本与所有训练样本的距离,KNN算法的预测时间较长。
  4. 敏感度高:KNN算法对于异常值和噪声数据非常敏感,容易受到局部特征的影响。

        KNN算法的应用实例包括但不限于手写数字识别、电影推荐系统、人脸识别和疾病诊断等。在这些应用中,KNN算法可以通过计算测试样本与训练样本之间的距离,找到最相似的邻居,并根据邻居的类别进行预测或分类。常用的距离度量方法包括欧式距离、曼哈顿距离、闵可夫斯基距离等。

1.2 opencv-k近邻算法

        OpenCV中的K近邻算法(K-Nearest Neighbors, KNN)是一种常用的监督学习算法,主要用于分类和回归问题。该算法基于样本之间的距离来进行分类或回归。

        1)对于分类问题,KNN算法将未知样本与训练集中的样本逐个比较距离,并选择距离最近的K个邻居样本。然后,根据这K个邻居样本的标签进行投票,将未知样本归类为票数最多的标签。

        2)对于回归问题,KNN算法同样将未知样本与训练集中的样本逐个比较距离,并选择距离最近的K个邻居样本。但是,在回归问题中,KNN算法会取这K个邻居样本的平均值作为未知样本的预测值。

        OpenCV中的KNN算法实现包含在ml模块中,函数为cv.ml.KNearest_create()。通过这个函数,你可以创建一个KNN分类器或回归器,并使用训练数据对其进行训练。训练完成后,你可以使用训练好的模型对新的数据进行预测。

k近邻算法是使用的是KNearest类 继承了StatModel类(base类)
class CV_EXPORTS_W KNearest : public StatModel
{
public:
    //类代码
};
StatModel类 方法:
    训练函数
    ret = cv.ml_StatModel.train(samples,layout,responses)
    samples: 训练的样本矩阵
    layout: 排列方式
    responses: 标签矩阵

    返还一个bool类型变量来作为是否完成了模型训练
    samples 必须为float32类型
    layout  cv.ml.ROW_SAMPLE 样本按行排列
            cv.ml.COL_SAMPLE 按列排列

    responses: 单行或者单列的矩阵 类型为int 或者 float
    
    检测函数
    retval, res = cv.ml_StatModel.predict(samples)
    flags模型标志
    res 结果矩阵
    samples 输入矩阵
    retval: 第一个值得标签

除了使用StatModel提供的通用的预测方法
        
        KNearest类也提供了预测方法
        retval,results,neighborResponses,dist = cv.ml_KNearest.findNearest(
        sample
        k
        )
        sample: 待预测数据
        k: 近邻数
        results: 预测结果
        neighborResponses: 可以选择输出的每个数据的k个最近邻
        dist: 输出k个最近邻的距离

        KNN算法的优点包括在线技术(新数据可以直接加入数据集而不必进行重新训练)、理论简单、容易实现、准确性高和对异常值和噪声有较高的容忍度。然而,KNN算法也存在一些缺点,如对于样本容量大的数据集计算量比较大、容易导致维度灾难、样本不平衡时预测偏差比较大,以及k值大小的选择需要依靠经验或交叉验证等。

        在OpenCV中,KNN算法可以用于各种图像处理任务,如图像分类、目标检测和模式识别等。通过调整k值和使用不同的距离度量方法,你可以优化KNN算法的性能以适应你的具体任务。

二、cv::ml::KNearest应用

2.1 数据集样本准备

   本文为了快速验证使用,采用mnist数据集,参考本专栏博文《C/C++开发,opencv-ml库学习,支持向量机(SVM)应用-CSDN博客》下载MNIST 数据集(手写数字识别),并解压。

        同时参考该博文“2.4 SVM(支持向量机)实时识别应用”的章节资料,利用python代码解压t10k-images.idx3-ubyte出图片数据文件。

2.2 KNearest应用

         类似ml模块的其他算法一样,创建了一个 cv::ml::KNearest对象,并设置了训练数据和终止条件。接着,我们调用 train 方法来训练决策树模型。最后,我们使用训练好的模型来预测一个新样本的类别。

	// 4. 设置并训练KNN模型 
    // 创建KNN模型  
    cv::Ptr<cv::ml::KNearest> knn = cv::ml::KNearest::create();  
    // 设置KNN参数 
    knn->setAlgorithmType(cv::ml::KNearest::BRUTE_FORCE); // 使用暴力搜索  
    knn->setIsClassifier(true); // 设置为分类器  
    knn->setDefaultK(3); // 设置K值  
    // 训练KNN模型  
    knn->train(trainingData, cv::ml::ROW_SAMPLE, labelsMat);  
    //同样预测函数调用
	cv::Mat testResp;
	float response = knn->predict(testData,testResp); 
    //存储模型,文件名借用了博文的命名,不必在意
    knn->save("mnist_svm.xml");

        训练及测试过的算法模型,保存输出(.xml),然后调用。PS,训练图片解压读取请参见C/C++开发,opencv-ml库学习,支持向量机(SVM)应用-CSDN博客的“2.4 SVM(支持向量机)实时识别应用”章节。

cv::Ptr<cv::ml::KNearest> kkn = cv::ml::StatModel::load<cv::ml::KNearest>("mnist_svm.xml");
	//read img 28*28 size
	cv::Mat image = cv::imread(fileName, cv::IMREAD_GRAYSCALE);
	//uchar->float32
	image.convertTo(image, CV_32F);
	//image data normalization
	image = image / 255.0;
	//28*28 -> 1*784
	image = image.reshape(1, 1);

	//预测图片
	float ret = knn->predict(image);
	std::cout << "predict val = "<< ret << std::endl;
2.3 程序编译

        和讲述支持向量机(SVM)应用的博文编译类似,采用opencv+mingw+makefile方式编译:

#/bin/sh
#win32
CX= g++ -DWIN32 
#linux
#CX= g++ -Dlinux 

BIN 		:= ./
TARGET      := opencv_ml04.exe
FLAGS		:= -std=c++11 -static
SRCDIR 		:= ./
#INCLUDES
INCLUDEDIR 	:= -I"../../opencv_MinGW/include" -I"./"
#-I"$(SRCDIR)"
staticDir   := ../../opencv_MinGW/x64/mingw/staticlib/
#LIBDIR		:= $(staticDir)/libopencv_world460.a\
#			   $(staticDir)/libade.a \
#			   $(staticDir)/libIlmImf.a \
#			   $(staticDir)/libquirc.a \
#			   $(staticDir)/libzlib.a \
#			   $(wildcard $(staticDir)/liblib*.a) \
#			   -lgdi32 -lComDlg32 -lOleAut32 -lOle32 -luuid 
#opencv_world放弃前,然后是opencv依赖的第三方库,后面的库是MinGW编译工具的库

LIBDIR 	    := -L $(staticDir) -lopencv_world460 -lade -lIlmImf -lquirc -lzlib \
				-llibjpeg-turbo -llibopenjp2 -llibpng -llibprotobuf -llibtiff -llibwebp \
				-lgdi32 -lComDlg32 -lOleAut32 -lOle32 -luuid 
source		:= $(wildcard $(SRCDIR)/*.cpp) 

$(TARGET) :
	$(CX) $(FLAGS) $(INCLUDEDIR) $(source)  -o $(BIN)/$(TARGET) $(LIBDIR)

clean:
	rm  $(BIN)/$(TARGET)

        make编译,make clean 清除可重新编译。

        运行效果,同样数据样本,相比前面博文所述算法训练结果,其准确率有了较大改善,大家可以尝试调整参数验证: 

2.4 main.cpp全代码

        main.cpp源代码,由于是基于前三篇博文支持向量机(SVM)应用、决策树(DTrees)应用、随机森林(RTrees)应用基础上,快速移用实现的,有很多支持向量机(SVM)应用或决策树(DTrees)的痕迹,采用的数据样本也非较合适的,仅仅是为了阐述c++ opencv K近邻算法(KNearest)应用说明。

#include <opencv2/opencv.hpp>  
#include <opencv2/ml/ml.hpp>  
#include <opencv2/imgcodecs.hpp>
#include <iostream>  
#include <vector>  
#include <iostream>
#include <fstream>

int intReverse(int num)
{
	return (num>>24|((num&0xFF0000)>>8)|((num&0xFF00)<<8)|((num&0xFF)<<24));
}

std::string intToString(int num)
{
	char buf[32]={0};
	itoa(num,buf,10);
	return std::string(buf);
}


cv::Mat read_mnist_image(const std::string fileName) {
	int magic_number = 0;
	int number_of_images = 0;
	int img_rows = 0;
	int img_cols = 0;

	cv::Mat DataMat;

	std::ifstream file(fileName, std::ios::binary);
	if (file.is_open())
	{
		std::cout << "open images file: "<< fileName << std::endl;

		file.read((char*)&magic_number, sizeof(magic_number));//format
		file.read((char*)&number_of_images, sizeof(number_of_images));//images number
		file.read((char*)&img_rows, sizeof(img_rows));//img rows
		file.read((char*)&img_cols, sizeof(img_cols));//img cols

		magic_number = intReverse(magic_number);
		number_of_images = intReverse(number_of_images);
		img_rows = intReverse(img_rows);
		img_cols = intReverse(img_cols);
		std::cout << "format:" << magic_number
			<< " img num:" << number_of_images
			<< " img row:" << img_rows
			<< " img col:" << img_cols << std::endl;

		std::cout << "read img data" << std::endl;

		DataMat = cv::Mat::zeros(number_of_images, img_rows * img_cols, CV_32FC1);
		unsigned char temp = 0;
		for (int i = 0; i < number_of_images; i++) {
			for (int j = 0; j < img_rows * img_cols; j++) {
				file.read((char*)&temp, sizeof(temp));
				//svm data is CV_32FC1
				float pixel_value = float(temp);
				DataMat.at<float>(i, j) = pixel_value;
			}
		}
		std::cout << "read img data finish!" << std::endl;
	}
	file.close();
	return DataMat;
}

cv::Mat read_mnist_label(const std::string fileName) {
	int magic_number;
	int number_of_items;

	cv::Mat LabelMat;

	std::ifstream file(fileName, std::ios::binary);
	if (file.is_open())
	{
		std::cout << "open label file: "<< fileName << std::endl;

		file.read((char*)&magic_number, sizeof(magic_number));
		file.read((char*)&number_of_items, sizeof(number_of_items));
		magic_number = intReverse(magic_number);
		number_of_items = intReverse(number_of_items);

		std::cout << "format:" << magic_number << "  ;label_num:" << number_of_items << std::endl;

		std::cout << "read Label data" << std::endl;
		//data type:CV_32SC1,channel:1
		LabelMat = cv::Mat::zeros(number_of_items, 1, CV_32SC1);
		for (int i = 0; i < number_of_items; i++) {
			unsigned char temp = 0;
			file.read((char*)&temp, sizeof(temp));
			LabelMat.at<unsigned int>(i, 0) = (unsigned int)temp;
		}
		std::cout << "read label data finish!" << std::endl;

	}
	file.close();
	return LabelMat;
}

//change path for real paths
std::string trainImgFile = "D:\\workForMy\\OpenCVLib\\opencv_demo\\opencv_ml01\\train-images.idx3-ubyte";
std::string trainLabeFile = "D:\\workForMy\\OpenCVLib\\opencv_demo\\opencv_ml01\\train-labels.idx1-ubyte";
std::string testImgFile = "D:\\workForMy\\OpenCVLib\\opencv_demo\\opencv_ml01\\t10k-images.idx3-ubyte";
std::string testLabeFile = "D:\\workForMy\\OpenCVLib\\opencv_demo\\opencv_ml01\\t10k-labels.idx1-ubyte";

void train_SVM()
{
	//read train images, data type CV_32FC1
	cv::Mat trainingData = read_mnist_image(trainImgFile);
	//images data normalization
	trainingData = trainingData/255.0;
	std::cout << "trainingData.size() = " << trainingData.size() << std::endl;
	std::cout << "trainingData.type() = " << trainingData.type() << std::endl;  
	std::cout << "trainingData.rows = " << trainingData.rows << std::endl; 
	std::cout << "trainingData.cols = " << trainingData.cols << std::endl; 
	//read train label, data type CV_32SC1
	cv::Mat labelsMat = read_mnist_label(trainLabeFile);
	std::cout << "labelsMat.size() = " << labelsMat.size() << std::endl; 
	std::cout << "labelsMat.type() = " << labelsMat.type() << std::endl;  
	std::cout << "labelsMat.rows = " << labelsMat.rows << std::endl; 
	std::cout << "labelsMat.cols = " << labelsMat.cols << std::endl; 

	std::cout << "trainingData & labelsMat finish!" << std::endl;  

    // //create SVM model
    // cv::Ptr<cv::ml::SVM> svm = cv::ml::SVM::create();  
	// //set svm args,type and KernelTypes
    // svm->setType(cv::ml::SVM::C_SVC);  
	// svm->setKernel(cv::ml::SVM::POLY);  
	// //KernelTypes POLY is need set gamma and degree
	// svm->setGamma(3.0);
	// svm->setDegree(2.0);
	// //Set iteration termination conditions, maxCount is importance
	// svm->setTermCriteria(cv::TermCriteria(cv::TermCriteria::EPS | cv::TermCriteria::COUNT, 1000, 1e-8)); 
	// std::cout << "create SVM object finish!" << std::endl;  

	// std::cout << "trainingData.rows = " << trainingData.rows << std::endl; 
	// std::cout << "trainingData.cols = " << trainingData.cols << std::endl; 
	// std::cout << "trainingData.type() = " << trainingData.type() << std::endl; 
    // // svm model train 
    // svm->train(trainingData, cv::ml::ROW_SAMPLE, labelsMat);  
	// std::cout << "SVM training finish!" << std::endl; 

    // // 创建决策树对象  
    // cv::Ptr<cv::ml::DTrees> dtree = cv::ml::DTrees::create();  
    // dtree->setMaxDepth(30);          // 设置树的最大深度  
	// dtree->setCVFolds(0);
    // dtree->setMinSampleCount(1);   // 设置分裂内部节点所需的最小样本数 
    // std::cout << "create dtree object finish!" << std::endl;  
    // // 训练决策树--trainingData训练数据,labelsMat训练标签
    // cv::Ptr<cv::ml::TrainData> td = cv::ml::TrainData::create(trainingData, cv::ml::ROW_SAMPLE, labelsMat);  
    // std::cout << "create TrainData object finish!" << std::endl; 
    // if(dtree->train(td))
	// {
	// 	std::cout << "dtree training finish!" << std::endl;
	// }else{
	// 	std::cout << "dtree training fail!" << std::endl; 
	// }
  
//    // 3. 设置并训练随机森林模型  
//     cv::Ptr<cv::ml::RTrees> rf = cv::ml::RTrees::create();  
//     rf->setMaxDepth(30);                    // 设置决策树的最大深度  
//     rf->setMinSampleCount(2);             // 设置叶子节点上的最小样本数  
//     rf->setTermCriteria(cv::TermCriteria(cv::TermCriteria::EPS + cv::TermCriteria::COUNT, 10, 0.1)); // 设置终止条件  
//     rf->train(trainingData, cv::ml::ROW_SAMPLE, labelsMat);  

	// 4. 设置并训练KNN模型 
    // 创建KNN模型  
    cv::Ptr<cv::ml::KNearest> knn = cv::ml::KNearest::create();  
    // 设置KNN参数 
    knn->setAlgorithmType(cv::ml::KNearest::BRUTE_FORCE); // 使用暴力搜索  
    knn->setIsClassifier(true); // 设置为分类器  
    knn->setDefaultK(3); // 设置K值  
    // 训练KNN模型  
    knn->train(trainingData, cv::ml::ROW_SAMPLE, labelsMat);  
 
    // svm model test  
	cv::Mat testData = read_mnist_image(testImgFile);
	//images data normalization
	testData = testData/255.0;
	std::cout << "testData.rows = " << testData.rows << std::endl; 
	std::cout << "testData.cols = " << testData.cols << std::endl; 
	std::cout << "testData.type() = " << testData.type() << std::endl; 
	//read test label, data type CV_32SC1
	cv::Mat testlabel = read_mnist_label(testLabeFile);
	cv::Mat testResp;
	// float response = svm->predict(testData,testResp); 
    // float response = dtree->predict(testData,testResp); 
	// float response = rf->predict(testData,testResp); 
	float response = knn->predict(testData,testResp); 
	// std::cout << "response = " << response << std::endl; 
	testResp.convertTo(testResp,CV_32SC1);
	int map_num = 0;
	for (int i = 0; i <testResp.rows&&testResp.rows==testlabel.rows; i++)
	{
		if (testResp.at<int>(i, 0) == testlabel.at<int>(i, 0))
		{
			map_num++;
		}
		// else{
		// 	std::cout << "testResp.at<int>(i, 0) " << testResp.at<int>(i, 0) << std::endl;
		// 	std::cout << "testlabel.at<int>(i, 0) " << testlabel.at<int>(i, 0) << std::endl;
		// }
	}
	float proportion  = float(map_num) / float(testResp.rows);
	std::cout << "map rate: " << proportion * 100 << "%" << std::endl;
	std::cout << "SVM testing finish!" << std::endl; 
	//save svm model
	// svm->save("mnist_svm.xml");
    // dtree->save("mnist_svm.xml");
	// rf->save("mnist_svm.xml");
	knn->save("mnist_svm.xml");
}

void prediction(const std::string fileName,cv::Ptr<cv::ml::KNearest> knn)
// void prediction(const std::string fileName,cv::Ptr<cv::ml::DTrees> dtree)
// void prediction(const std::string fileName,cv::Ptr<cv::ml::SVM> svm)
{
	//read img 28*28 size
	cv::Mat image = cv::imread(fileName, cv::IMREAD_GRAYSCALE);
	//uchar->float32
	image.convertTo(image, CV_32F);
	//image data normalization
	image = image / 255.0;
	//28*28 -> 1*784
	image = image.reshape(1, 1);

	//预测图片
	// float ret = dtree->predict(image);
	float ret = knn->predict(image);
	std::cout << "predict val = "<< ret << std::endl;
}

std::string imgDir = "D:\\workForMy\\OpenCVLib\\opencv_demo\\opencv_ml01\\t10k-images\\";
std::string ImgFiles[5] = {"image_0.png","image_10.png","image_20.png","image_30.png","image_40.png",};
void predictimgs()
{
	//load svm model
	// cv::Ptr<cv::ml::SVM> svm = cv::ml::StatModel::load<cv::ml::SVM>("mnist_svm.xml");
    //load DTrees model
    // cv::Ptr<cv::ml::DTrees> dtree = cv::ml::StatModel::load<cv::ml::DTrees>("mnist_svm.xml");
	// cv::Ptr<cv::ml::RTrees> rf = cv::ml::StatModel::load<cv::ml::RTrees>("mnist_svm.xml");
	cv::Ptr<cv::ml::KNearest> kkn = cv::ml::StatModel::load<cv::ml::KNearest>("mnist_svm.xml");
	for (size_t i = 0; i < 5; i++)
	{
		prediction(imgDir+ImgFiles[i],kkn);
	}
}

int main()  
{  
	train_SVM();
	predictimgs();	
    return 0;  
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

py_free-物联智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值