Skip to main content

Confluent's Python client for Apache Kafka

Project description

[!WARNING] Due to an error in which we included dependency changes to a recent patch release, Confluent recommends users to refrain from upgrading to 2.6.2 of Confluent Kafka. Confluent will release a new minor version, 2.7.0, where the dependency changes will be appropriately included. Users who have already upgraded to 2.6.2 and made the required dependency changes are free to remain on that version and are recommended to upgrade to 2.7.0 when that version is available. Upon the release of 2.7.0, the 2.6.2 version will be marked deprecated. We apologize for the inconvenience and appreciate the feedback that we have gotten from the community.

Confluent's Python Client for Apache KafkaTM

confluent-kafka-python provides a high-level Producer, Consumer and AdminClient compatible with all Apache KafkaTM brokers >= v0.8, Confluent Cloud and Confluent Platform. The client is:

  • Reliable - It's a wrapper around librdkafka (provided automatically via binary wheels) which is widely deployed in a diverse set of production scenarios. It's tested using the same set of system tests as the Java client and more. It's supported by Confluent.

  • Performant - Performance is a key design consideration. Maximum throughput is on par with the Java client for larger message sizes (where the overhead of the Python interpreter has less impact). Latency is on par with the Java client.

  • Future proof - Confluent, founded by the creators of Kafka, is building a streaming platform with Apache Kafka at its core. It's high priority for us that client features keep pace with core Apache Kafka and components of the Confluent Platform.

Usage

For a step-by-step guide on using the client see Getting Started with Apache Kafka and Python.

Aditional examples can be found in the examples directory or the confluentinc/examples github repo, which include demonstration of:

  • Exactly once data processing using the transactional API.
  • Integration with asyncio.
  • (De)serializing Protobuf, JSON, and Avro data with Confluent Schema Registry integration.
  • Confluent Cloud configuration.

Also refer to the API documentation.

Finally, the tests are useful as a reference for example usage.

Basic Producer Example

from confluent_kafka import Producer

p = Producer({'bootstrap.servers': 'mybroker1,mybroker2'})

def delivery_report(err, msg):
    """ Called once for each message produced to indicate delivery result.
        Triggered by poll() or flush(). """
    if err is not None:
        print('Message delivery failed: {}'.format(err))
    else:
        print('Message delivered to {} [{}]'.format(msg.topic(), msg.partition()))

for data in some_data_source:
    # Trigger any available delivery report callbacks from previous produce() calls
    p.poll(0)

    # Asynchronously produce a message. The delivery report callback will
    # be triggered from the call to poll() above, or flush() below, when the
    # message has been successfully delivered or failed permanently.
    p.produce('mytopic', data.encode('utf-8'), callback=delivery_report)

# Wait for any outstanding messages to be delivered and delivery report
# callbacks to be triggered.
p.flush()

For a discussion on the poll based producer API, refer to the Integrating Apache Kafka With Python Asyncio Web Applications blog post.

Basic Consumer Example

from confluent_kafka import Consumer

c = Consumer({
    'bootstrap.servers': 'mybroker',
    'group.id': 'mygroup',
    'auto.offset.reset': 'earliest'
})

c.subscribe(['mytopic'])

while True:
    msg = c.poll(1.0)

    if msg is None:
        continue
    if msg.error():
        print("Consumer error: {}".format(msg.error()))
        continue

    print('Received message: {}'.format(msg.value().decode('utf-8')))

c.close()

Basic AdminClient Example

Create topics:

from confluent_kafka.admin import AdminClient, NewTopic

a = AdminClient({'bootstrap.servers': 'mybroker'})

new_topics = [NewTopic(topic, num_partitions=3, replication_factor=1) for topic in ["topic1", "topic2"]]
# Note: In a multi-cluster production scenario, it is more typical to use a replication_factor of 3 for durability.

# Call create_topics to asynchronously create topics. A dict
# of <topic,future> is returned.
fs = a.create_topics(new_topics)

# Wait for each operation to finish.
for topic, f in fs.items():
    try:
        f.result()  # The result itself is None
        print("Topic {} created".format(topic))
    except Exception as e:
        print("Failed to create topic {}: {}".format(topic, e))

Thread Safety

The Producer, Consumer and AdminClient are all thread safe.

Install

Install self-contained binary wheels

$ pip install confluent-kafka

NOTE: The pre-built Linux wheels do NOT contain SASL Kerberos/GSSAPI support. If you need SASL Kerberos/GSSAPI support you must install librdkafka and its dependencies using the repositories below and then build confluent-kafka using the instructions in the "Install from source" section below.

To use Schema Registry with the Avro serializer/deserializer:

$ pip install "confluent-kafka[avro,schemaregistry]"

To use Schema Registry with the JSON serializer/deserializer:

$ pip install "confluent-kafka[json,schemaregistry]"

To use Schema Registry with the Protobuf serializer/deserializer:

$ pip install "confluent-kafka[protobuf,schemaregistry]"

When using Data Contract rules (including CSFLE) add the rulesextra, e.g.:

$ pip install "confluent-kafka[avro,schemaregistry,rules]"

Install from source

For source install, see the Install from source section in INSTALL.md.

Broker Compatibility

The Python client (as well as the underlying C library librdkafka) supports all broker versions >= 0.8. But due to the nature of the Kafka protocol in broker versions 0.8 and 0.9 it is not safe for a client to assume what protocol version is actually supported by the broker, thus you will need to hint the Python client what protocol version it may use. This is done through two configuration settings:

  • broker.version.fallback=YOUR_BROKER_VERSION (default 0.9.0.1)
  • api.version.request=true|false (default true)

When using a Kafka 0.10 broker or later you don't need to do anything (api.version.request=true is the default). If you use Kafka broker 0.9 or 0.8 you must set api.version.request=false and set broker.version.fallback to your broker version, e.g broker.version.fallback=0.9.0.1.

More info here: https://github.com/edenhill/librdkafka/wiki/Broker-version-compatibility

SSL certificates

If you're connecting to a Kafka cluster through SSL you will need to configure the client with 'security.protocol': 'SSL' (or 'SASL_SSL' if SASL authentication is used).

The client will use CA certificates to verify the broker's certificate. The embedded OpenSSL library will look for CA certificates in /usr/lib/ssl/certs/ or /usr/lib/ssl/cacert.pem. CA certificates are typically provided by the Linux distribution's ca-certificates package which needs to be installed through apt, yum, et.al.

If your system stores CA certificates in another location you will need to configure the client with 'ssl.ca.location': '/path/to/cacert.pem'.

Alternatively, the CA certificates can be provided by the certifi Python package. To use certifi, add an import certifi line and configure the client's CA location with 'ssl.ca.location': certifi.where().

License

Apache License v2.0

KAFKA is a registered trademark of The Apache Software Foundation and has been licensed for use by confluent-kafka-python. confluent-kafka-python has no affiliation with and is not endorsed by The Apache Software Foundation.

Developer Notes

Instructions on building and testing confluent-kafka-python can be found here.

Confluent Cloud

For a step-by-step guide on using the Python client with Confluent Cloud see Getting Started with Apache Kafka and Python on Confluent Developer.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

confluent_kafka-2.10.0.tar.gz (193.8 kB view details)

Uploaded Source

Built Distributions

confluent_kafka-2.10.0-cp313-cp313-win_amd64.whl (4.0 MB view details)

Uploaded CPython 3.13 Windows x86-64

confluent_kafka-2.10.0-cp313-cp313-manylinux_2_28_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.28+ x86-64

confluent_kafka-2.10.0-cp313-cp313-manylinux_2_28_aarch64.whl (15.3 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.28+ ARM64

confluent_kafka-2.10.0-cp313-cp313-macosx_13_0_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.13 macOS 13.0+ x86-64

confluent_kafka-2.10.0-cp313-cp313-macosx_13_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.13 macOS 13.0+ ARM64

confluent_kafka-2.10.0-cp312-cp312-win_amd64.whl (4.0 MB view details)

Uploaded CPython 3.12 Windows x86-64

confluent_kafka-2.10.0-cp312-cp312-manylinux_2_28_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

confluent_kafka-2.10.0-cp312-cp312-manylinux_2_28_aarch64.whl (15.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ ARM64

confluent_kafka-2.10.0-cp312-cp312-macosx_11_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

confluent_kafka-2.10.0-cp312-cp312-macosx_10_9_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

confluent_kafka-2.10.0-cp311-cp311-win_amd64.whl (4.0 MB view details)

Uploaded CPython 3.11 Windows x86-64

confluent_kafka-2.10.0-cp311-cp311-manylinux_2_28_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

confluent_kafka-2.10.0-cp311-cp311-manylinux_2_28_aarch64.whl (15.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ ARM64

confluent_kafka-2.10.0-cp311-cp311-macosx_11_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

confluent_kafka-2.10.0-cp311-cp311-macosx_10_9_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

confluent_kafka-2.10.0-cp310-cp310-win_amd64.whl (4.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

confluent_kafka-2.10.0-cp310-cp310-manylinux_2_28_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

confluent_kafka-2.10.0-cp310-cp310-manylinux_2_28_aarch64.whl (15.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ ARM64

confluent_kafka-2.10.0-cp310-cp310-macosx_11_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

confluent_kafka-2.10.0-cp310-cp310-macosx_10_9_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

confluent_kafka-2.10.0-cp39-cp39-win_amd64.whl (4.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

confluent_kafka-2.10.0-cp39-cp39-manylinux_2_28_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

confluent_kafka-2.10.0-cp39-cp39-manylinux_2_28_aarch64.whl (15.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ ARM64

confluent_kafka-2.10.0-cp39-cp39-macosx_11_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

confluent_kafka-2.10.0-cp39-cp39-macosx_10_9_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

confluent_kafka-2.10.0-cp38-cp38-win_amd64.whl (4.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

confluent_kafka-2.10.0-cp38-cp38-manylinux_2_28_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

confluent_kafka-2.10.0-cp38-cp38-manylinux_2_28_aarch64.whl (15.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ ARM64

confluent_kafka-2.10.0-cp38-cp38-macosx_11_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

confluent_kafka-2.10.0-cp38-cp38-macosx_10_9_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

confluent_kafka-2.10.0-cp37-cp37m-win_amd64.whl (4.0 MB view details)

Uploaded CPython 3.7m Windows x86-64

confluent_kafka-2.10.0-cp37-cp37m-manylinux_2_28_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ x86-64

confluent_kafka-2.10.0-cp37-cp37m-manylinux_2_28_aarch64.whl (15.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ ARM64

confluent_kafka-2.10.0-cp37-cp37m-macosx_10_9_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file confluent_kafka-2.10.0.tar.gz.

File metadata

  • Download URL: confluent_kafka-2.10.0.tar.gz
  • Upload date:
  • Size: 193.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.7

File hashes

Hashes for confluent_kafka-2.10.0.tar.gz
Algorithm Hash digest
SHA256 30a346908f3ad49c4bc1cb5557e7a8ce484190f8633aa18f9b87b2620809ac13
MD5 441ef76256715203d7fb280bdf72ce27
BLAKE2b-256 a0c522087627478d2cc97b864dd1774c1e2d4007acc22b8f78aec5a7a41f6436

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.0-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.0-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 649ccde18b4f2ff509a16093a06ca13629e4f4b3146d4ef5a82805c869cf8cbd
MD5 7a702ec567f433a2bdd194f4a3317531
BLAKE2b-256 845f5d68af39ed6f1cdbcc49dd412436894303cc03bb851e3f540a9c23d384ac

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.0-cp313-cp313-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.0-cp313-cp313-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 6b8b057d436d82c1b2d819915d03e2b446bfa55403acd440f9222509ba2147de
MD5 142da37976f1b5b134f573f95808f274
BLAKE2b-256 ba2ebd4edabda58dbe94c235b587205ac222633abd6da9c6677832071f85b66c

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.0-cp313-cp313-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.0-cp313-cp313-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 bf706b1ebb540276791b5c42ac624c93195c34782848b24b2da1467caeef479b
MD5 f471451ad014d46dfdd0a96857397071
BLAKE2b-256 48ceb44b68ac417cf8602c5dee1115fb27ac174585039f58527ab07584ae1ce9

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.0-cp313-cp313-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.0-cp313-cp313-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 514c4a4dcb522aacdc17fa3e2751ae8670553850c9e22844ac997ec6459b3a48
MD5 97529492d854df5e1a6f70e5ed45162b
BLAKE2b-256 ee9f569976c299ec40347588b40e61e8bcd065d958741a63159a4d77ca7859df

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.0-cp313-cp313-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.0-cp313-cp313-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 10230c3da4cd047cf488cef405f6e209da4e8403c0e52e45b89b1d878420082b
MD5 d6dddd59a1e9c087fbe77695e20b2369
BLAKE2b-256 e23cdb66f729b129e8e35af92571602f522091f753da8f42a7e217d5bed23ad6

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 ef5aad8c04c54fe6ef89dc08a4ba24a80be90b05bbbc3348370c1c51222e0a5e
MD5 228e3bd084ef93580ae53c124af3ebdd
BLAKE2b-256 c1218c2b37cdc5ef60dee2ed9ac05dd89eaef822d4dd284b7d7e4678aa18aba6

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.0-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.0-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 ddb9400786eedd8a6c0cbcceaddb8329a2597f4c02dc72389e83859da47d22d6
MD5 8609981319939aa53e4a142af2429f78
BLAKE2b-256 6e00b334804360b6490f5dfa910432ad9dbba7f91baa76168299458d03c50e40

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.0-cp312-cp312-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.0-cp312-cp312-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 7252fee8d7287bae71f1a506967b3782e67ba5b699c4d095d16fabce92a63cfd
MD5 e4b9c67d470b7fccd3f2ec61ee853511
BLAKE2b-256 8af9a30b62c78178be818a30fab23e826d3c5cdf60f53e2ebb31fa3e5fdded00

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a89e9ba5c8e18891b3bbf333001a9e12af43bd5bc3c3353065109582f3f078fc
MD5 4e2846df86af25c1b418b89722b97c59
BLAKE2b-256 037bf940f1cd8c25d61cecc5f6ca044871f90370a80bd0d0a6595852151e4669

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2268a607d374325e3a8fc779d8639de4344ce4d1ad2b88e8f9d13d97baae4e71
MD5 02531822ccb0711a1242d55d40773e32
BLAKE2b-256 c1fa00398f8906da8fbefd8732501cffc5910b1a55af03a292b6720c19258c97

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 82800e5cf27e21a7bbccb5aa6f2d9114ab253364526b08b0b97614369bf95612
MD5 d1817633fd83e9bbb97a1e6f7e0e8d3d
BLAKE2b-256 2edb1f068f8566213717f587e18cbecee79173fc4d0ed1a14ece3a9d9c5a9aae

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.0-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.0-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 7eae0c1e49fb42e5085555c4387102034c0fe3194e2572049769ef4c30f733cc
MD5 f0090cc795a1c31b02e50ade6587ee4a
BLAKE2b-256 0bf7c436c39fb67a0785c90b9813f55d99834f0496c8d68bbd69fb7024ce465b

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.0-cp311-cp311-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.0-cp311-cp311-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 4e4d4350f66eb3c4cd987f603f08974e461ce732dc63741744e09e0b490a3b1d
MD5 dabe3d022a64847fbfa1b6262c2dcb54
BLAKE2b-256 29fb9dc751fd1a381c3001cd64942d79ae17c95509991352d0f3441c22d4a94d

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 965743d6832d3947c29970eeeedcb3728dfe69b5296fd5578fdb18ce39792318
MD5 887f118c366589633edb766a7ba02257
BLAKE2b-256 874249b99f0e319d2b4d9b4780065bd98f39f1f5caacce5f222f674e7d97e537

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1448d6a5e8afd99c81221db2fd7cf33bd2079ce04df8ff5882b208911b0112a7
MD5 b98ca77ab505481fa13a9d83ff89e961
BLAKE2b-256 b6468e4a8cde59a2c55c179443b521453d1e14ac4229278d34ff25b0df8fa82c

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 7eead1134e3aae9380bf5c923d93e25052cfca5b6a55bf99d11ebadf3ec6f21e
MD5 312ab91f199cd00cf919ab88c865be50
BLAKE2b-256 96d5a1a6f819d7ed9af04363c98b46105edcf00f9145241e2c33b6c4464e1ec3

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.0-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.0-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 413d7a3d4caca6b2c28dbe86595ef17af83d679edea403bcb75fd5af3bd5afa7
MD5 1016d13f7f05e46b02ab69940e0b15a6
BLAKE2b-256 a9cd816d9e0af021303ebb8416d862028fd42c498237de1b8a193310635ebccb

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.0-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.0-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 46734d24b0e0c8fd84b05174a7338a71eb3a7d34a494e4c458838f89c537508f
MD5 b13ee16fe7edd2b81d41f1f160610903
BLAKE2b-256 23bb55602b6bf2ccdfb255aa25da1af7c7e304bb8bb8717d84b26e2425e9946f

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 32f5ea8ecee98d1c1afd523115cbdb719a6f87b852c19b8898fa76db95ec5f4a
MD5 0084058403a3bc2d5ae605e417254d84
BLAKE2b-256 029142a4f4346f48f7d5bf146ce124d9af6acfbcf417175f8ac89d054ef70aa1

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 635c62a51ec31ff82864043120dbc7c61eb62abf4e0682cc6ee8526e9b04e16d
MD5 d8863d09d79d1c21903500d0ab8a6f60
BLAKE2b-256 cc692b88c1ca2d31af5f60117522178189603488cb5390ee4d6fb65e01cdebf0

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 84c4e50aaf0a51402810bd82cc3b9601a17c866fb44a1aa310b7686009d06b56
MD5 83d80cb53d57e793741cb817561d8d1f
BLAKE2b-256 f0187228076548a0112d4edbbcb86aa13bbf63da7e0b17c1afd542a91652ac88

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.0-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.0-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 735c560ecb076e33eb5e14741a1cd55023f0cbc156e4d09f8591dcf9e55efc0b
MD5 1fa907acdaf3b36944ebabacc5470741
BLAKE2b-256 51e5249e02c8c6303ab3fb95fa2f49e90cb6f868c497d83c8119b445147d20e1

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.0-cp39-cp39-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.0-cp39-cp39-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 d5e841e2e2a75fab254acf806449ce013d4e72470bf0aa7c96469fa9b3829693
MD5 db752197abca2b0604226c6bda951840
BLAKE2b-256 f4a2f455f071b0a13900a866b84d36f74b79cfc328abed213faf83718401551e

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6b692f7e1af2c2085a342ffb0d1c2d0fd6664b3bff43a3c092c0c4d2c6c8f77b
MD5 2437fddcfe776fbf3992893d10ee5a6d
BLAKE2b-256 30906e42fcb9b184a5d834049113be304b15aa0bce8dace89f13bf8035adf2c0

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3e1915c428c044a5764fdd79cd12e94c961d9e74863ae1440287141173bf3138
MD5 1b3fa567d7911386903c27600f4d2bfc
BLAKE2b-256 25701ec5381bfe9b1ae016c927e423492bd26bae4e26c1a1e5699b2280e9d06b

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.0-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 0fb9ea56dc8d1773678f7ea3c1a1c0f59001502c8ff44df79142ab471915e81e
MD5 6f0554e7a7b19b64a81662e3e305c84c
BLAKE2b-256 9400d36f3a690018f9576294f5b5457ac21d57ec956c359e79862ea24e6235de

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.0-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.0-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 b81d70ba4fbb81350daccea9de7d99f190bb02bc4d0dfbb151ce9ddee501e245
MD5 3e820835011964c372daa0ba078822e4
BLAKE2b-256 e16ae302daa028eac02819aad92c79c3e35a47166470ff1fa100d2629383a5fd

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.0-cp38-cp38-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.0-cp38-cp38-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 5a7a16592ce6c5fffdfec4f587ab887f478e68f70df14484184e4e8ec3a86c90
MD5 05a6e6102e1e7f81d625bf45e60aeabe
BLAKE2b-256 4ba4a05649585315f4eae54423e34db9fcefd1c890db3983798bcb529c5161f6

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 30d40b0b43f0e15d830b610640eeb625ebd49cc792254fcdcd5ae7396d91004d
MD5 182eec5688f1f4019a2d9973968126ed
BLAKE2b-256 c0827753935d37632de3ddca6a6ce168f40d9614645546616d24b5e694aff753

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5784cf3301470ce85a41b5dbcf1b7d4fe0ac31eee120f3c184b18ed79f32dc9f
MD5 c502322658d5de7a888adff1d14532fb
BLAKE2b-256 348f9058fbc08f00346f247cbf0a934331342599879d5d13af546a1572bddedb

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.0-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 13f49fe760ff33c43c852c3e09ef7a914efea9a8a7e553080e13d611cd3eedad
MD5 7a362b666ca01339c72a57d2434f9cfb
BLAKE2b-256 8a8585a7ade6f4142b1052d67d986fcd783a672bdda84a1cdf2c6dd5d269b495

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.0-cp37-cp37m-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.0-cp37-cp37m-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 e7dd3a0607139ed3de4d3c511861ff8a84af0f04c47acb6c899f033540027c58
MD5 93fbe960775dc44f5e4bffe59d152a6e
BLAKE2b-256 8d45acf7396aab84404f53ea9b857f3a552ca8064956353679d0662057046bce

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.0-cp37-cp37m-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.0-cp37-cp37m-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 bba76d0965b31e61c9d7a45831e8f801f089af98a781508b74daeac54268b883
MD5 99a39b9e16f515ff81188a45ca539ae6
BLAKE2b-256 eedffcc35612a1ff6dba647ca77ed42ff4b1557760aeac8042bc23474af3d315

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.10.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.10.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9a80084018177238dbe0dd6562c46259e1883e2eaf9eef8945bf74f13fc69b5c
MD5 96744540eb8ca3f1d49e4a18e95bca65
BLAKE2b-256 b7e9b2382eb6dfbce1e25c920e904b5e002d40374eea8b0f000aa19fcc552cdc

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page