基于 Python 的招聘信息可视化分析系统

该项目使用Python从招聘网站抓取数据,进行清洗和存储,并通过Flask、Bootstrap和Echarts构建可视化分析系统。系统提供岗位的学历、经验、技能、薪资等多维度分析,地域细化以及热门岗位推荐,并应用决策树预测薪资。用户可以查看各行业岗位数、工作经验与薪资分布、学历与薪资分布等信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

温馨提示:文末有 CSDN 平台官方提供的学长 QQ 名片 :) 

1. 项目简介 

本项目利用 Python 从某招聘网站抓取海量招聘数据,进行数据清洗和格式化后存储到关系型数据库中(如mysql、sqlite等),利用 Flask + Bootstrap + Echarts 搭建招聘信息可视化分析系统,实现不同岗位的学历要求、工作经验、技能要求、薪资待遇等维度的可视化分析,并根据岗位所在地进行不同地域(华东、华北、华中、华南、西南、西北和东北)维度的细粒度分析。同时依据用户需求实现热门岗位的推荐,并利用决策树算法实现岗位薪资的预测。

        系统于2024年进行迭代升级!最新系统视频如下:

基于 Python 的招聘信息可视化分析系统

 2. 招聘信息

分析某招聘网站的网页结构和接口可以看出,招聘数据可直接通过接口返回的 json 格式数据直接得到,因此采集相对比较简单了,直接模拟接口请求,对返回的数据进行解析即可。

base_url = 'https://search.xxxxx.com/list/000000,000000,0000,00,9,99,%25E5%25BC%2580%25E5%258F%2591,2,{}.html?lang=c&postchannel=0000&workyear=99&cotype=99&degreefrom=99&jobterm=99&companysize=99&ord_field=0&dibiaoid=0&line=&welfare='
datas = []

for page in range(1, total_page + 1):
    print('--> 第 {} 页'.format(page))
    url = base_url.format(page)
    headers = {
        'Accept': 'application/json, text/javascript, */*; q=0.01',
        'user-agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 11_1_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.141 Safari/537.36',
        'accept-language': 'zh-CN,zh;q=0.9',
        'cache-control': 'max-age=0',
        'Cookie': 'Your Cookie',
        'Host': 'search.51job.com',
    }
    response = requests.get(url, headers=headers)
    items = response.json()['engine_jds']

    for item in items:
        try:
            job_name = item['job_name']
            hangye = item['companyind_text']
            company = item['company_name']
            salary = item['providesalary_text']

            location = item['attribute_text'][0]
            location = location.split('-')[0]
            location = location.split('_')[0]

            jingyan = item['attribute_text'][1]
            xueli = item['attribute_text'][2]
            zhaopin_counts = 1#item['attribute_text'][3]
            pub_time = item['issuedate']
            datas.append((job_name, hangye, company, location, salary, jingyan, xueli, zhaopin_counts, pub_time))
        except:
            pass

    print('爬取了 {} 条就业数据'.format(len(datas)))

 3. 招聘信息可视化分析系统

3.1 系统注册登录

3.2 招聘数据展示

3.3 各行业招聘岗位数与薪资分布

3.4 不同工作经验的岗位数与平均薪资的分布情况

3.5 不同学历的岗位数与平均薪资的分布情况 

3.6 不同区域热招岗位及其薪资分布情况

3.7 热门岗位推荐

3.8 基于决策树模型的岗位薪资价格预测 

4. 总结

        本项目利用 Python 从某招聘网站抓取海量招聘数据,进行数据清洗和格式化后存储到关系型数据库中(如mysql、sqlite等),利用 Flask + Bootstrap + Echarts 搭建招聘信息可视化分析系统,实现不同岗位的学历要求、工作经验、技能要求、薪资待遇等维度的可视化分析,并根据岗位所在地进行不同地域(华东、华北、华中、华南、西南、西北和东北)维度的细粒度分析。同时依据用户需求实现热门岗位的推荐,并利用决策树算法实现岗位薪资的预测。

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。技术交流、源码获取认准下方 CSDN 官方提供的学长 QQ 名片 :)

精彩专栏推荐订阅:

1. Python 毕设精品实战案例
2. 自然语言处理 NLP 精品实战案例
3. 计算机视觉 CV 精品实战案例

基于Python招聘信息可视化分析系统是一种面向招聘公司和求职者的信息分析工具。该系统通过对招聘网站上的招聘信息进行爬取和数据清洗,然后利用Python中的数据分析和可视化库对这些信息进行统计和展示,帮助用户更好地了解当前的招聘市场和就业趋势。 系统主要包括以下功能:首先,通过Python编写网络爬虫程序,对各大招聘网站上的招聘信息进行抓取,并将数据存储到数据库中。其次,利用Python中的数据分析库(如Pandas、Numpy等)对这些数据进行处理和分析,包括对不同岗位、行业、地区等维度的招聘数量、薪资水平、任职要求等进行统计和分析。最后,利用数据可视化库(如Matplotlib、Seaborn、Plotly等)对分析结果进行可视化展示,以图表、地图等形式直观地呈现出招聘市场的概况和趋势。 针对毕业设计,可以进一步加入一些高级功能,比如对招聘信息的自然语言处理分析,实现对职位描述的自动分类和关键词提取;或者将系统部署到web平台上,实现在线数据展示和交互查询的功能。同时,还可以考虑与其他领域的数据进行结合,比如结合经济数据、人口数据等,分析不同因素对招聘市场的影响。 通过这样一个基于Python招聘信息可视化分析系统,用户可以更直观地了解目前的招聘市场趋势,为求职和招聘提供数据支持和决策参考。同时,也为Python和数据分析在人力资源管理领域的应用提供了一个范例。
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Python极客之家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值