Python数据分析+可视化项目案例教学:亚马逊平台用户订单数据分析

本文通过Python对亚马逊订单数据进行深入分析,包括订单在不同时间段和周内的分布,美国各州订单数量,以及商品的性别属性占比。发现早上的订单量最多,周内订单分布均匀,女性商品占比较高。此外,还展示了商品属性的词云图,揭示了商品尺寸和颜色的热门趋势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

关于亚马逊订单数据的探索!

次项目大家就仅当作学习使用好了

导入库

import pandas as pd
from pyecharts.charts import *
from pyecharts import options as opts
from pyecharts.commons.utils import JsCode

Python从零基础入门到实战系统教程、源码、视频,想要数据集的同学也可以点这里

数据处理

  • 对时间字段进行处理,转为datetime;
  • 对配送州字段进行处理,原始数据中既有州缩写也有全称,统一为全称呼;
df_c = pd.read_excel('C:/Users/Administrator/Desktop/市场占有率.xls')
df = pd.read_excel('C:/Users/Administrator/Desktop/亚马逊入驻商订单报表.xls', header=1)
df['支付时间'] = pd.to_datetime(df['支付时间'], utc=False)# .dt.strftime('%Y-%m-%d %H:%M:%S')
df['下单时间'] = pd.to_datetime(df['下单时间'], utc=False)# .dt.strftime('%Y-%m-%d %H:%M:%S')
df['最早配送时间'] = pd.to_datetime(df['最早配送时间'], utc=False)
df['最晚配送时间'] = pd.to_datetime(df['最晚配送时间'], utc=False)
df['最早送达时间'] = pd.to_datetime(df['最早送达时间'], utc=False)
df['最晚送达时间'] = pd.to_datetime(df['最晚送达时间'], utc=False)
c_map = dict()
for idx, row in df_c.iterrows():
    c_map[row['州名简写']] = row['美国州名英文'].replace(u'\xa0', u' ')

c_map['SD'] = 'South Dakota'
c_map['NM'] = 'New Mexico'
c_map['SC'] = 'South Carolina'
c_map['NH'] = 'New Hampshire'
c_map['NJ'] = 'New Jersey'


def format_state(state):
    try:
        c = state.upper().replace('.', '')
        if c in c_map.keys():
            return c_map[c]
        elif c in [x.upper() for x in c_map.values()]:
            return list(c_map.values())[[x.upper() for x in c_map.values()].index(c)]
        else:
            return None
    except AttributeError:
        return None
    
df['配送州'] = df['配送州'].map(format_state)

df.head()

各时间段订单量

早上的订单最多,好像和国内用户习惯不太一样呢~

data = df.groupby([df['下单时间'].dt.hour])['订单ID'].count().reset_index()
data_x = ['{}点'.format(int(i)) for i in data['下单时间']]
data_y = data['订单ID'].tolist()
 
area_color_js = """
    new echarts.graphic.LinearGradient(
    0, 0, 0, 1,
    [{offset: 0, color: 'rgba(128, 255, 165)'},
    {offset: 1, color: 'rgba(1, 191, 236)'}],
    false)
"""
 
bg_color_js = """
    new echarts.graphic.LinearGradient(
    0, 0, 0, 1,
    [{offset: 0, color: 'rgba(128, 255, 165, 0.2)'},
    {offset: 1, color: 'rgba(1, 191, 236, 0.2)'}],
    false)
"""
 
line = Line(init_opts=opts.InitOpts(theme='white', width='1000px', height='500px', bg_color=JsCode(bg_color_js)))
line
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值