之前,我们介绍了MAML模型的基本原理和基本流程元学习—模型不可知元学习(MAML),这里简单的从零开始来实现一个MAML模型。这里我们通过随机生成数据来定义十个回归任务,其中每一个回归任务的训练样本数量和测试的样本数量均为10个。为了便于展示,这里采用的单层神经网络来实现每一个回归任务。具体可以参考下面的代码展示。
代码:
#encoding=utf-8
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
def samplePoints(k):
#随机生成50个样本点
x = np.random.rand(k,50)
#各个元素的采样概率均为0.5
y = np.random.choice([0,1],size=k,p=[.5,.5]).reshape([-1,1])
x = torch.from_numpy(x)
y = torch.from_numpy(y)
x = x.float()
y = y.float()
return x,y
class MamlModel(nn.Module):
'''
这里我们使用的是最简单的回归任务,使用了一个单层的神经网络进行实现
没有特别复杂,理解原理就好
'''
def __init__(self,input_dim,out_dim,n_sample):
super(MamlModel, self).__init__()
self.input_dim = input_dim
s