元学习—MAML模型Pytorch实现

本文详细介绍了如何从零开始使用Pytorch实现元学习中的MAML模型,通过随机生成数据创建了10个回归任务,每个任务拥有10个训练和测试样本。为了简化示例,选用单层神经网络进行建模。核心代码在训练过程中得以展示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

之前,我们介绍了MAML模型的基本原理和基本流程元学习—模型不可知元学习(MAML),这里简单的从零开始来实现一个MAML模型。这里我们通过随机生成数据来定义十个回归任务,其中每一个回归任务的训练样本数量和测试的样本数量均为10个。为了便于展示,这里采用的单层神经网络来实现每一个回归任务。具体可以参考下面的代码展示。
 

代码:

#encoding=utf-8
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np


def samplePoints(k):
    #随机生成50个样本点
    x = np.random.rand(k,50)
    #各个元素的采样概率均为0.5
    y = np.random.choice([0,1],size=k,p=[.5,.5]).reshape([-1,1])
    x = torch.from_numpy(x)
    y = torch.from_numpy(y)
    x = x.float()
    y = y.float()
    return x,y

class MamlModel(nn.Module):
    '''
    这里我们使用的是最简单的回归任务,使用了一个单层的神经网络进行实现
    没有特别复杂,理解原理就好
    '''
    def __init__(self,input_dim,out_dim,n_sample):
        super(MamlModel, self).__init__()
        self.input_dim = input_dim
        s
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

甜辣uu

谢谢关注再接再厉

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值