基于随机森林与LSTM神经网络的住宅用电比较分析及预测 代码+论文 完整毕设

本文研究了随机森林和LSTM在住宅用电预测中的性能,比较了它们在预测精度、泛化能力和实用性上的优劣,利用历史用电数据作为输入,以期优化电力需求管理策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要

本文旨在探讨基于随机森林(Random Forest)与长短期记忆神经网络(Long Short-Term Memory, LSTM)的住宅用电比较分析及预测方法。随机森林是一种集成学习方法,通过构建多个决策树进行预测,具有较强的鲁棒性和准确性;而LSTM神经网络则是一种适用于序列数据预测的深度学习模型,能够捕捉时间序列数据中的长期依赖关系。本研究使用了历史用电数据作为输入,通过对比随机森林和LSTM在住宅用电预测中的表现,旨在找出两种方法在预测精度、泛化能力和实用性方面的优劣,并提出相应的改进方法。

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

甜辣uu

谢谢关注再接再厉

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值