直接看视频:
基于CNN-BiLSTM-Attention的流量预测 完整数据代码可直接运行_哔哩哔哩_bilibili
模型:
有效提取径流时间序列的信息特征,提高径流预测模型的高维非线性拟合能力和预测性能的稳定性,将卷积神经网络(CNN),双向长短期记忆网络(BiLSTM)和注意力机制(attention)相结合,构建了CNN-BiLSTM-attention的径流组合模型.以长江流域中游汉口站径流量数据进行模拟验证
基于CNN-BiLSTM-Attention的流量预测 完整数据代码可直接运行_哔哩哔哩_bilibili
有效提取径流时间序列的信息特征,提高径流预测模型的高维非线性拟合能力和预测性能的稳定性,将卷积神经网络(CNN),双向长短期记忆网络(BiLSTM)和注意力机制(attention)相结合,构建了CNN-BiLSTM-attention的径流组合模型.以长江流域中游汉口站径流量数据进行模拟验证