【2020更新】python 获取数据集的means和stdevs(均值、方差)

本文介绍了一种计算图像数据集的平均像素值和标准差的方法,这对于图像预处理和标准化至关重要。通过遍历图像数据集,使用Python和OpenCV库,可以有效地计算每个颜色通道的平均值和标准差,为后续的图像识别和深度学习模型训练提供数据准备。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import numpy as np
from tqdm import tqdm
from glob import glob
import cv2
import random
import os

means = [0, 0, 0]
stdevs = [0, 0, 0]

index = 1
num_imgs = 0
imgslist = glob('/users/xxx/xxx/*.jpg')
for imgpath in tqdm(imgslist):
    num_imgs += 1
    img = cv2.imread(imgpath)
    img = np.asarray(img)
    img = img.astype(np.float32)/255.
    for i in range(3):
        means[i] += img[:, :, i].mean()
        stdevs[i] += img[:, :, i].std()

means = np.asarray(means) / num_imgs
stdevs = np.asarray(stdevs) / num_imgs

print('normMean = {}   normStd = {}'.format(means,stdevs))

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值