ResNet18、50模型结构

论文地址:https://arxiv.org/pdf/1512.03385.pdf

pytorch官方预训练模型地址:

'resnet18': 'https://download.pytorch.org/models/resnet18-f37072fd.pth',
'resnet34': 'https://download.pytorch.org/models/resnet34-b627a593.pth',
'resnet50': 'https://download.pytorch.org/models/resnet50-0676ba61.pth',
'resnet101': 'https://download.pytorch.org/models/resnet101-63fe2227.pth',
'resnet152': 'https://download.pytorch.org/models/resnet152-394f9c45.pth',
'resnext50_32x4d': 'https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth',
'resnext101_32x8d': 'https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth',
'wide_resnet50_2': 'https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth',
'wide_resnet101_2': 'https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth'

pytorch官方resnet网络代码(包括resnet18、34、50、101、152,resnext50_32x4d、resnext101_32x8d、wide_resnet50_2、wide_resnet101_2):

### ResNet18 网络模型结构ResNet18 是一种经典的卷积神经网络架构,在深度学习领域广泛应用于图像识别任务。该模型由多个残差块组成,这些残差块帮助缓解了深层网络中的梯度消失问题[^2]。 #### 残差连接机制 ResNet18 的核心特点是其引入的跳跃连接(skip connections),即所谓的残差学习单元。这种设计允许信息绕过某些层直接传递给后续层,从而有效地解决了随着网络加深而可能出现的退化问题[^3]。 #### 层级构成 具体来说,ResNet18 主要分为以下几个部分: - **输入层**:接收大小为 \(224 \times 224\) 像素彩色图片作为输入。 - **初始卷积层**:应用7x7卷积核提取特征,并通过最大池化操作减少空间维度。 - **四个阶段的基础模块堆叠**: - Stage 1 到 Stage 4 各自包含了两个基本的残差块; - 这些阶段内的通道数依次翻倍增长; - **全局平均池化层** 和 **全连接分类器** 以下是简化版的 ResNet18 架构可视化表示: ```plaintext Input -> Conv(7×7,64) -> MaxPool(3×3) -> Stage1(BasicBlock × 2) -> Stage2(BasicBlock × 2) -> Stage3(BasicBlock × 2) -> Stage4(BasicBlock × 2) -> GlobalAvgPool -> FC(num_classes) ``` 为了更直观理解这个架构,下面给出一张典型的 ResNet18 结构图表: ![ResNet18](https://pytorch.org/assets/images/resnet.png) 此图为 PyTorch 官方文档中提供的标准 ResNet18 图形展示,清晰展示了各层次之间的关系以及数据流方向[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值