往期文章:
目前,计算机视觉在许多地方都有重要的应用,例如自动驾驶汽车、监控系统和图像识别。计算机视觉的主要挑战之一是目标检测,它涉及识别和定位图像和视频中的目标。
对于模型预测目标的数量,相比于标注数量是多出很多的。采用什么后处理方式,去除掉冗余的框,对最终的输出结果会产生较大的影响?
本文就从NMS 、 Soft NMS 、NMS Free 和 WBF
的角度进行辨析,帮助对这块内容,形成整体的思维。
一、NMS
非极大值抑制(Non-Maximum Suppression,NMS
),并不是深度学习时期,和目标检测的产物。在传统的图像处理