【AI面试】NMS 、 Soft NMS 、NMS Free 和 WBF 的辨析

本文详细介绍了目标检测中的四种后处理技术:NMS、Soft NMS、NMS Free和WBF(Weighted Boxes Fusion)。NMS是一种快速但有时过于激进的抑制重叠框的方法,而Soft NMS通过降低重叠框的置信度以避免完全删除。NMS Free避免了NMS的后处理,通过学习直接得到所需结果。WBF则用于融合多个模型的预测结果,提高检测性能。实验表明,WBF在提高准确性的同时,比标准NMS慢,但更具鲁棒性和稳定性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


往期文章:

目前,计算机视觉在许多地方都有重要的应用,例如自动驾驶汽车、监控系统和图像识别。计算机视觉的主要挑战之一是目标检测,它涉及识别和定位图像和视频中的目标。

对于模型预测目标的数量,相比于标注数量是多出很多的。采用什么后处理方式,去除掉冗余的框,对最终的输出结果会产生较大的影响?

本文就从NMS 、 Soft NMS 、NMS Free 和 WBF 的角度进行辨析,帮助对这块内容,形成整体的思维。

一、NMS

非极大值抑制Non-Maximum Suppression,NMS),并不是深度学习时期,和目标检测的产物。在传统的图像处理

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

钱多多先森

你的鼓励,是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值