过拟合与欠拟合

本文深入探讨了机器学习中常见的两个问题——过拟合与欠拟合,详细解释了它们的表现形式、典型loss图及可能的原因。过拟合通常发生在模型过于复杂或训练数据不足时,表现为训练集loss低而测试集loss高;欠拟合则是因为模型过于简单或不正确,导致训练和测试误差都较大。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

过拟合与欠拟合

过拟合

典型loss图:
在这里插入图片描述
过拟合指的是训练集loss低但测试集loss高
可能的原因是训练数据不足
重复的数据可一直参与训练,但容易过拟合
数据量少也容易参数过拟合

欠拟合

典型loss图:
在这里插入图片描述
欠拟合是训练误差很大,测试误差也很大
欠拟合的可能原因:
模型本身不够复杂或者说不正确
loss函数设置的不正确

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值