【论文阅读-ICSE2023】预训练目标对代码相关任务的影响

研究发现预训练能提升模型在代码修复、代码摘要和代码补全等任务的性能,即使下游数据集小。MLM通常足够,但特定任务预训练目标在满足一定条件时可增强性能。文章指出,预训练目标的选择对模型效果有显著影响,且多目标结合可能并非总是有益。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简介

Title: Automating Code-Related Tasks Through Transformers: The Impact of Pre-training1
Author: Rosalia Tufano, Luca Pascarella, Gabriele Bavota
Published: ICSE2023

Abstract:
尽管现在很多研究能够证明预训练可以提升模型性能,但很少有研究解释预训练目标的影响。耳熟能详的MLM只是NLP领域的常见的文本预训练任务,而且NLP领域近期的研究也表明专门为下游任务设计预训练目标能进一步提升模型性能。例如,在代码摘要任务中,预训练目标可以是为方法生成一个合适的方法名。这篇文章预训练了32个Transformer(Text-To-Text Transfer Transformer (T5),small版本)模型,其中包含了使用通用预训练目标和专门为下游任务设计的预训练目标。实验包含了三个任务:bug-fixing, code summarization, code completion。结论包含两点:(1)预训练能提升模型性能,即使下游任务数据集很小。(2)MLM目标通常足以使模型的预测性能最大化。

单从摘要角度来看个,感觉结论的第一点是显而易见的。而第二点和上面提到的“NLP领域近期的研究”相矛盾,意味着大家以后也不用为下游任务特定设计预训练目标。

有哪些预训练

这篇文章首先给出目前代码相关的预训练任务总结
在这里插入图片描述
后续还会用到的预训练目标:

  • MLM:随机遮住一些
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值