简介
Title: Automating Code-Related Tasks Through Transformers: The Impact of Pre-training1
Author: Rosalia Tufano, Luca Pascarella, Gabriele Bavota
Published: ICSE2023
Abstract:
尽管现在很多研究能够证明预训练可以提升模型性能,但很少有研究解释预训练目标的影响。耳熟能详的MLM只是NLP领域的常见的文本预训练任务,而且NLP领域近期的研究也表明专门为下游任务设计预训练目标能进一步提升模型性能。例如,在代码摘要任务中,预训练目标可以是为方法生成一个合适的方法名。这篇文章预训练了32个Transformer(Text-To-Text Transfer Transformer (T5),small版本)模型,其中包含了使用通用预训练目标和专门为下游任务设计的预训练目标。实验包含了三个任务:bug-fixing, code summarization, code completion。结论包含两点:(1)预训练能提升模型性能,即使下游任务数据集很小。(2)MLM目标通常足以使模型的预测性能最大化。
单从摘要角度来看个,感觉结论的第一点是显而易见的。而第二点和上面提到的“NLP领域近期的研究”相矛盾,意味着大家以后也不用为下游任务特定设计预训练目标。
有哪些预训练
这篇文章首先给出目前代码相关的预训练任务总结
后续还会用到的预训练目标:
- MLM:随机遮住一些