City Brain

该博客探讨了一种优化算法,通过预处理两点之间的最短路径来解决路径问题,将复杂度从n*n*log降低到n*n+n*log。文章通过AC代码展示了如何枚举连续路径并计算不连续路径的最短组合,从而找到最优路径解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:City Brain


显然两条路径之间,相交的部分一定是一段连续的路径。
所以我们可以枚举连续的路径,然后剩下4段不连续的路径。我们可以预处理两点之间的最短路,然后算出分别的和,然后三分即可。但是复杂度是 n * n * log 的。
但是我们可以发现,对于枚举连续的相同长度的路径我们只需要知道4段不连续路径的最小值,然后复杂度就变成 n * n + n * log 了。


AC代码:

#pragma GCC optimize("-Ofast","-funroll-all-loops")
#include<bits/stdc++.h>
//#define int long long
using namespace std;
const int N=5010;
int n,m,k,d[N][N],mi[N],s1,t1,s2,t2; double res=1e18;
vector<int> g[N];
void bfs(int s){
	queue<int> q; d[s][s]=0; q.push(s);
	while(q.size()){
		int u=q.front(); q.pop();
		for(int to:g[u]) if(d[s][to]==-1) d[s][to]=d[s][u]+1,q.push(to);
	}
}
double get(int x,int y){
	if(!x) return 0.0;
	return 1.0/(1+y/x)*(x-y%x)+1.0/(2+y/x)*(y%x);
}
double calc(int x,int y){
	int l=0,r=k;
	while(r-l>10){
		int midl=l+(r-l)/3,midr=r-(r-l)/3;
		if(2*get(x,midl)+get(y,k-midl)<=2*get(x,midr)+get(y,k-midr)) r=midr;
		else l=midl;
	}
	double res=1e18;
	for(int i=l;i<=r;i++) res=min(res,2*get(x,i)+get(y,k-i));
	return res;
}
signed main(){
	cin>>n>>m>>k; memset(d,-1,sizeof d); memset(mi,0x3f,sizeof mi);
	for(int i=1,a,b;i<=m;i++) cin>>a>>b,g[a].push_back(b),g[b].push_back(a);
	cin>>s1>>t1>>s2>>t2;
	for(int i=1;i<=n;i++) bfs(i);
	for(int i=1;i<=n;i++) for(int j=i+1;j<=n;j++) if(d[i][j]!=-1){
		int mi1=1e9,mi2=1e9;
		if(d[s1][i]!=-1&&d[j][t1]!=-1) mi1=min(mi1,d[s1][i]+d[j][t1]);
		if(d[t1][i]!=-1&&d[j][s1]!=-1) mi1=min(mi1,d[t1][i]+d[j][s1]);
		if(d[s2][i]!=-1&&d[j][t2]!=-1) mi2=min(mi2,d[s2][i]+d[j][t2]);
		if(d[t2][i]!=-1&&d[j][s2]!=-1) mi2=min(mi2,d[t2][i]+d[j][s2]);
		if(mi1>=1e9||mi2>=1e9) continue;
		mi[d[i][j]]=min(mi[d[i][j]],mi1+mi2);
	}
	for(int i=0;i<=n;i++) if(mi[i]<0x3f3f3f3f) res=min(res,calc(i,mi[i]));
	printf("%.10lf\n",min(res,calc(0.0,d[s1][t1]+d[s2][t2])));
	return 0;
}
资源下载链接为: https://pan.quark.cn/s/67c535f75d4c Linux 中的 top 命令是一个功能强大的实时监控工具,能够详细展示系统资源的使用情况,涵盖 CPU、内存和进程等方面。本文将深入剖析 top 命令的输出内容及其含义,帮助大家更好地掌握这一工具的使用。 top 命令的输出大致可以分为以下几部分:系统状态、CPU 使用情况、内存使用情况、进程列表以及其他信息。 系统状态部分包括以下内容: 当前时间:例如“11:00:54”,表示系统当前的时间。 系统运行时间:如“up 54 days, 23:35”,表示系统已经连续运行了多长时间。 登录用户:例如“6 users”,显示当前登录到系统的用户数量。 负载平均值:例如“load average: 16.32, 18.75, 21.04”,分别表示过去 1 分钟、5 分钟和 15 分钟的平均负载。这个数值反映了系统处理任务的压力。如果负载平均值持续高于 CPU 核心数的 70%,可能意味着系统处于过载状态。 CPU 使用情况部分显示各 CPU 核心的使用情况,例如“29.7 us, 18.9 sy, 0.0 ni, 49.3 id, 1.7 wa, 0.0 hi, 0.4 si, 0.0 st”,其中: “us”表示用户空间的 CPU 使用率; “sy”表示内核空间的 CPU 使用率; “ni”表示优先级调整的 CPU 使用率; “id”表示空闲的 CPU 使用率; “wa”表示等待 I/O 完成的 CPU 使用率; “hi”表示硬件中断的 CPU 使用率; “si”表示软件中断的 CPU 使用率; “st”表示被停止的进程的 CPU 使用率。 内存使用情况部分包括: KiB Mem:显示内存的总量、空闲量、已使用量以及缓存/缓冲区量,例如“32781216 total, 1506220
资源下载链接为: https://pan.quark.cn/s/22ca96b7bd39 材料力学是工程领域的重要基础课程,主要研究固体在受力时的变形、应力、应变及稳定性等问题。MATLAB是一款强大的数值计算与数据分析软件,广泛应用于材料力学的计算与分析,能够帮助学生和工程师快速解决复杂问题。本资料集包含“材料力学课程作业”中的基本编程案例,旨在帮助学习者掌握利用MATLAB处理材料力学典型问题的方法。 应力与应变计算:应力和应变是材料力学的核心概念。MATLAB可通过输入几何尺寸、载荷和材料属性,计算物体受力状态下的应力分布和应变状态。例如,可编写程序模拟简支梁、悬臂梁或连续梁的应力和应变分析。 胡克定律应用:胡克定律是线弹性材料的基本定律,建立了应力与应变的线性关系。在MATLAB中,可构建函数实现胡克定律计算,输入弹性模量E和泊松比ν,求解不同载荷下任意形状和尺寸弹性体的响应。 能量方法:材料力学的能量方法包括势能法、虚功原理等,常用于求解平衡问题。MATLAB可通过编程计算势能、虚功,找出满足条件的平衡状态。 有限元分析:MATLAB的FEM工具箱可进行有限元分析,将复杂结构离散化为小单元,求解整体应力和应变。通过编程,可对板、壳、梁等不同结构进行建模和求解。 屈曲分析:当结构承受过大荷载时,可能会发生屈曲。MATLAB可用于确定结构的临界荷载和屈曲模式,这对设计安全结构至关重要。 非线性问题处理:实际问题中,材料性质可能随应力或应变改变,形成非线性问题。MATLAB提供非线性方程求解器和优化工具,可用于处理这类问题。 实验数据拟合与处理:材料力学实验中,需对测量数据进行处理分析,如绘制应力应变曲线。MATLAB的曲线拟合和数据可视化功能可帮助理解材料力学性能。 动态分析:对于涉及时间变量的动态问题,如振动分析,MATLAB可进行瞬态和稳态动力学分析,求解固有频率
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值