yolov5实现火焰识别/检测步骤记录

本文介绍如何从零开始使用YOLOv5框架训练火灾检测模型,包括环境搭建、数据集准备、模型训练及推理步骤。通过详细指导,帮助读者快速上手目标检测任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.克隆yolov5仓库

git clone https://github.com/ultralytics/yolov5

2.安装python3.7、Pytorch1.7.0环境

3.安装yolov5环境

pip install -r requirements.txt

4.数据集与配置文件

#数据集来源
https://universe.roboflow.com/dataset-9xayt/fire-data-annotations-lwfou
在…/datasets保存数据集

在data目录创建 fire.yaml
内容:
path: …/datasets/fire #dataset path
train: train/images
val: test/images
#test: test/images #optional
nc: 1
names: [‘Fire’]

4.开始训练

#epochs default 300
python train.py --img 640 --batch 16 --epochs 300 --data fire.yaml --weights yolov5s.pt

5.输出的结果在 runs/train/expxx

6.使用模型进行推理

python detect.py --weights runs/train/expxx/weights/best.pt --source
0 # cam
img.jpg # image
vid.mp4 # video
path/ # directory
‘path/*.jpg’ # glob
‘https://youtu.be/Zgi9g1ksQHc’ # YouTube
‘rtsp://example.com/media.mp4’ # RTSP, RTMP, HTTP stream

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值