此opencv系列博客只是为了记录本人对<<opencv3计算机视觉-pyhton语言实现>>的学习笔记,所有代码在我的github主页https://github.com/RenDong3/OpenCV_Notes.
欢迎star,不定时更新...
OpenCV可以检测图像的主要特征,然后提取这些特征、使其成为图像描述符,这类似于人的眼睛和大脑。这些图像特征可作为图像搜索的数据库。此外,人们可以利用这些关键点将图像拼接起来,组成一个更大的图像,比如将许多图像放在一块,然后形成一个360度全景图像。
这里我们将学习使用OpenCV来检测图像特征,并利用这些特征进行图像匹配和搜索。我们会选取一些图像,并通过单应性,检测这些图像是否在另一张图像中。
一 特征检测算法
有许多用于特征检测和提取的算法,我们将会对其中大部分进行介绍。OpenCV最常使用的特征检测和提取算法有:
- Harris:该算法用于检测角点;
- SIFT:该算法用于检测斑点;
- SURF:该算法用于检测角点;
- FAST:该算法用于检测角点;
- BRIEF:该算法用于检测斑点;
- ORB:该算法代表带方向的FAST算法与具有旋转不变性的BRIEF算法;
通过以下方法进行特征匹配:
- 暴力(Brute-Force