OpenCv学习笔记9--Harris角点检测

这篇博客记录了作者学习OpenCV中Harris角点检测的过程,包括特征检测算法的概述,特征的定义,以及Harris检测角点的实现。作者强调了角点、边和斑点作为图像特征的重要性,并提供了cornerHarris函数的参数解释和应用示例。文章还提到了其他常用的特征检测算法,如SIFT、SURF等,并鼓励读者深入理解Harris角点检测的原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

此opencv系列博客只是为了记录本人对<<opencv3计算机视觉-pyhton语言实现>>的学习笔记,所有代码在我的github主页https://github.com/RenDong3/OpenCV_Notes.

欢迎star,不定时更新...

OpenCV可以检测图像的主要特征,然后提取这些特征、使其成为图像描述符,这类似于人的眼睛和大脑。这些图像特征可作为图像搜索的数据库。此外,人们可以利用这些关键点将图像拼接起来,组成一个更大的图像,比如将许多图像放在一块,然后形成一个360度全景图像。

这里我们将学习使用OpenCV来检测图像特征,并利用这些特征进行图像匹配和搜索。我们会选取一些图像,并通过单应性,检测这些图像是否在另一张图像中。

一 特征检测算法

有许多用于特征检测和提取的算法,我们将会对其中大部分进行介绍。OpenCV最常使用的特征检测和提取算法有:

  • Harris:该算法用于检测角点;
  • SIFT:该算法用于检测斑点;
  • SURF:该算法用于检测角点;
  • FAST:该算法用于检测角点;
  • BRIEF:该算法用于检测斑点;
  • ORB:该算法代表带方向的FAST算法与具有旋转不变性的BRIEF算法;

通过以下方法进行特征匹配:

  • 暴力(Brute-Force
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值