遗传算法与差分进化算法总结比较

本文总结了遗传算法和差分进化算法的基本原理和求解步骤。遗传算法通过遗传操作寻找解决方案,而DE算法则通过变异、交叉和选择逐步优化种群。两种算法在迭代中保留优秀特性,逼近最优解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

遗传算法


遗传算法的基本原理:

遗传算法是一种基于生物进化原理构想出来的搜索最优解的仿生算法,它是模拟基因重 组与进化的自然过程,把待解决问题的参数编成二进制码或十进制码(也可编成其他进制码)即基因,若干基因组成一个染色
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MISAYAONE

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值