针对大模型的上下文注入攻击

       大型语言模型(LLMs)的开发和部署取得了显著进展。例如ChatGPT和Llama-2这样的LLMs,利用庞大的数据集和Transformer架构,能够产生连贯性、上下文准确性甚至具有创造性的文本。LLMs最初和本质上是为静态场景设计的,即输入数据保持不变,缺乏清晰结构。因此,在任何基于LLMs的交互式应用中,上下文信息首先需要被整合到输入中,以指导LLMs生成与上下文相关的响应,从而实现交互行为。LLMs的输出在很大程度上依赖于请求中提供的上下文。

      然而,这些模型面临着由上述实践引入的新漏洞。具体来说,来自不可信来源的误导性上下文可能导致LLMs表现出不期望的行为,例如接受它们通常会拒绝的有害请求。

在本文中我们探索上下文注入攻击,即注入虚假上下文并随后误导LLMs的行为。更具体地说,我们关注这种攻击如何绕过LLMs的安全措施以产生不允许的响应。这种响应可能带来重大的安全风险,例如错误信息的传播、非法或不道德行为以及技术滥用。

  1. 1、背景

    1.1 大模型聊天模型的原理

ChatGPT聊天模型以会话方式进行交互,但它们的基础建立在大型语言模型(LLM)的原理之上。具体来说,这些模型旨在预测下一个单词或标记。因此,尽管用户感知到的是一轮又一轮的互动,但实际上聊天模型是通过继续提供文本的方式来运作的。换句话说,这些模型并没有以传统意义上“记住”聊天历史。相反,多轮对话中的每个用户请求都可以被视为与LLM的独立交互

在实践中,开发了聊天标记语言(Chat Markup Language, ChatML)来结构化模型输入。这种结构化格式确保了模型能够以有组织的方式全面理解上下文,从而提高了文本预测和续写的准确性。

1.2 潜在威胁模型

用户与聊天模型的交互存在两种主要方法:API和WebUI访问,它们允许不同的用户能力。

2、上下文攻击

2.1 上下文攻击流程

2.1.1 上下文构造策略

接受引诱

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值