最长上升子序列
最长上升子序列是指在一个给定序列中,找到一个最长的子序列,使得子序列中的元素单调递增。例如,序列 [1, 3, 5, 4, 7] 的最长上升子序列是 [1, 3, 5, 7],长度为4。
这是一个经典的动态规划问题。
假设dp[i]表示以第i个元素为结尾的最长上升子序列的长度。
可以用一个嵌套循环来遍历所有的元素对,如果前一个元素小于后一个元素,则可以将后一个元素添加到前一个元素所在的最长上升子序列中,从而得到以第i个元素为结尾的最长上升子序列长度。
具体地,我们可以这样定义dp[i]:
for (int j = 0; j < i; j++)
if nums[j] < nums[i]
dp[i] = max(dp[i], dp[j] + 1)
其中,nums是给定的序列,dp[i]表示以nums[i]为结尾的最长上升子序列长度,j是i之前的元素。由于我们需要找到最长的上升子序列,因此最终的答案应该是dp数组中的最大值。
下面是一个使用动态规划求解LIS问题的C++代码:
代码(动态规划)
#include <bits/stdc++.h>
using namespace std;
// 该函数求 nums 序列的最长子序列
int lengthOfLIS(vector<int>& nums) {
int n = nums.size();
// 特判空序列
if (n == 0) return 0;
// 状态数组,初始化成1,因为各个元素可以单独构成一个上升序列
vector<int> dp(n, 1);
// 从nums[1] 开始遍历整个数组
for (int i = 1; i < n; i++) {
// 从前往后比那里之前的元素
for (int j = 0; j < i; j++) {
// j 位置的元素值小于 i 位置的元素值,则 nums[i] 可以拼接在 nums[j] 后面
if (nums[j] < nums[i]) {
dp[i] = max(dp[i], dp[j] + 1);
}
}
}
// 状态数组中最大的值就是最长上升子序列的长度
return *max_element(dp