“序列优化探究:最长上升子序列的算法发现与应用“

最长上升子序列

最长上升子序列是指在一个给定序列中,找到一个最长的子序列,使得子序列中的元素单调递增。例如,序列 [1, 3, 5, 4, 7] 的最长上升子序列是 [1, 3, 5, 7],长度为4。

这是一个经典的动态规划问题。

假设dp[i]表示以第i个元素为结尾的最长上升子序列的长度。

可以用一个嵌套循环来遍历所有的元素对,如果前一个元素小于后一个元素,则可以将后一个元素添加到前一个元素所在的最长上升子序列中,从而得到以第i个元素为结尾的最长上升子序列长度。

具体地,我们可以这样定义dp[i]:

for (int j = 0; j < i; j++)
    if nums[j] < nums[i]
        dp[i] = max(dp[i], dp[j] + 1)

其中,nums是给定的序列,dp[i]表示以nums[i]为结尾的最长上升子序列长度,j是i之前的元素。由于我们需要找到最长的上升子序列,因此最终的答案应该是dp数组中的最大值。

下面是一个使用动态规划求解LIS问题的C++代码:

代码(动态规划)

#include <bits/stdc++.h>
using namespace std;

// 该函数求 nums 序列的最长子序列
int lengthOfLIS(vector<int>& nums) {
   
   
    int n = nums.size();
    // 特判空序列
    if (n == 0) return 0;

    // 状态数组,初始化成1,因为各个元素可以单独构成一个上升序列
    vector<int> dp(n, 1);
    
    // 从nums[1] 开始遍历整个数组
    for (int i = 1; i < n; i++) {
   
   
        // 从前往后比那里之前的元素
        for (int j = 0; j < i; j++) {
   
   
            // j 位置的元素值小于 i 位置的元素值,则 nums[i] 可以拼接在 nums[j] 后面
            if (nums[j] < nums[i]) {
   
    
                dp[i] = max(dp[i], dp[j] + 1);
            }
        }
    }
    
    // 状态数组中最大的值就是最长上升子序列的长度
    return *max_element(dp
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值