深度学习_卷积神经网络_分组卷积

本文介绍了分组卷积的概念及其与普通卷积的区别。通过对比分析,解释了分组卷积如何通过减少参数量实现更高效的计算,并探讨了其作为稀疏操作的应用价值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

分组卷积介绍

分组卷积(Group Convolution)最早出现在AlexNet网络中,分组卷积被用来切分网络,使其能在2个GPU上并行运行。

接下来我们看下面的图来分析分组卷积和普通卷积的区别:

在这里插入图片描述

普通卷积进行运算的时候,如果输入feature map尺寸是C×H×WC\times H \times WC×H×W,卷积核有N个,那么输出的feature map与卷积核的数量相同也是N个,每个卷积核的尺寸为C×K×KC\times K \times KC×K×K,N个卷积核的总参数量为N×C×K×KN \times C \times K \times KN×C×K×K

分组卷积的主要对输入的feature map进行分组,然后每组分别进行卷积。如果输入feature map尺寸是C×H×WC\times H \times WC×H×W,输出feature map的数量为N个,如果我们设定要分成G个group,则每组的输入feature map数量为CG\frac{C}{G}GC,则每组的输出feature map数量为NG\frac{N}{G}GN,每个卷积核的尺寸为CG×K×K\frac{C}{G} \times K \times KGC×K×K,卷积核的总数仍为N个,每组的卷积核数量为NG\frac{N}{G}GN,卷积核只与其同组的输入map进行卷积,卷积核的总参数量为N×CG×K×KN \times \frac{C}{G} \times K \times KN×GC×K×K易得总的参数量减少为原来的1G\frac{1}{G}G1

分组卷积的作用

  1. 分组卷积可以减少参数量。
  2. 分组卷积可以看成是稀疏操作,有时可以在较少参数量的情况下获得更好的效果(相当于正则化操作)。
  3. 当分组数量等于输入feature map数量时,输出feature map数量也等于输入feature map数量,这时分组卷积就成了Depthwise卷积,可以使参数量进一步缩减。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Rocky Ding*

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值