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Abstract—Accurately performing date and time calculations
in software is non-trivial due to the inherent complexity and
variability of temporal concepts such as time zones, daylight
saving time (DST) adjustments, leap years and leap seconds, clock
drifts, and different calendar systems. Although the challenges
are frequently discussed in the grey literature, there has not been
any systematic study of date/time issues that have manifested
in real software systems. To bridge this gap, we qualitatively
study 151 bugs and their associated fixes from open-source
Python projects on GitHub to understand: (a) the conceptual
categories of date/time computations in which bugs occur, (b) the
programmatic operations involved in the buggy computations, and
(c) the underlying root causes of these errors. We also analyze
metrics such as bug severity and detectability as well as fix size
and complexity.

Our study produces several interesting findings and actionable
insights, such as (1) time-zone-related mistakes are the largest
contributing factor to date/time bugs; (2) a majority of the studied
bugs involved incorrect construction of date/time values; (3) the
root causes of date/time bugs often involve misconceptions about
library API behavior, such as default conventions or nuances
about edge-case behavior; (4) most bugs occur within a single
function and can be patched easily, requiring only a few lines
of simple code changes. Our findings indicate that static analysis
tools can potentially find common classes of high-impact bugs and
that such bugs can potentially be fixed automatically. Based on
our insights, we also make concrete recommendations to software
developers to harden their software against date/time bugs via
automated testing strategies.

Index Terms—date, time, time zone, DST, empirical study,
software bugs

I. INTRODUCTION

Time is a fundamental concept in software engineering.
Whether it’s scheduling flights, processing bank transactions,
computing payroll wages, validating digital certificates, con-
trolling industrial processes, or logging operational data, the
correctness of date and time logic is of utmost importance
across a multitude of systems and functions.

Accurately performing date and time calculations in soft-
ware is non-trivial due to the inherent complexity and variabil-
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ity of temporal concepts such as time zones, daylight saving
time (DST) adjustments, leap years and leap seconds, clock
drifts, and different calendar systems. Software often needs to
handle dates and times across various geographical regions,
each with its own conventions and peculiarities.

Software bugs relating to date and time logic can lead to
accidental misinformation [1[], data corruption [2], estimation
errors [3], security breaches [4]], financial losses [3]], and even
legal liabilities [6]. For example, a bug in the systems of the
US Patent and Trademark Office assigned legally inaccurate
expiration dates to over 27,000 patents [6], potentially expos-
ing hundreds of millions of dollars to litigation. Electronic
health records in a widely used medical software system in
the U.S. have been reported to get corrupted during daylight
savings transitions, leading hospitals to suspend operations
or switch to paper twice a year [2]. In a 2007 incident,
the U.S. Air Force’s F-22 Raptors experienced navigational
malfunctions when crossing the international date line [7]. In
2024, some gas stations in New Zealand failed to dispense
fuel on February 29" [5]. These examples underscore the
importance of date and time logic in maintaining the integrity
and reliability of critical software systems.

To alleviate some of these challenges, programming lan-
guages usually offer standard libraries to support date/time
computations. Often, third-party libraries provide alternative
methods for representing and manipulating temporal data. The
design choices of each library—which may affect correctness
in edge cases—are typically identifiable only through natural-
language API documentation or the implementation code it-
self. Inconsistencies between conventions used across libraries
and programming languages can lead to bugs when developers
interoperate between multiple APIs. Although these practical
challenges with programming data/time logic are frequently
discussed in the grey literature [8} 9, [10], there is no empirical
data about the common or most important types of date/time
issues that developers face. We aim to bridge this gap.

In this paper, we present a systematic qualitative study of
date and time bugs occurring in open-source GitHub projects



using the Python programming language. Specifically, we
manually analyze 151 date/time bugs and their associated
fixes to understand root causes and identify common patterns.
We use an open-coding approach to classify bugs along
three dimensions: (a) the conceptual categories of date/time
computations (such as time zones and DST) in which the
bug occurred, (b) the programmatic operations involved in
the buggy computations, and (c) the underlying root causes
of these errors, as evidenced by the associated fixes. We
also qualitatively analyze four metrics: bug severity, bug
detectability, fix size, and fix complexity.

Our study produces several interesting findings and action-
able insights, such as (1) time-zone-related mistakes are the
largest contributing factor to date/time bugs; (2) a majority of
the studied bugs involved incorrect construction of date/time
values; (3) the root causes of date/time bugs often involve
misconceptions about library API behavior, such as default
conventions or nuances about edge-case behavior; (4) most
bugs occur within a single function and can be patched easily,
requiring only a few lines of simple code changes.

Our findings indicate that there is potential for static analysis
tools to discover common classes of high-impact bugs auto-
matically. We demonstrate this potential via a small case study
using CodeQL. We also recommend strategies for software
developers to harden their software against date/time bugs via
automated testing: specifically, using a combination of time-
mocking tools and increasing test coverage for discovering
shallow time-zone-related bugs; using property-based testing
for string-formatting/parsing; and using fuzz testing for un-
covering edge-case DST and out-of-bounds issues.

To summarize, this paper makes the following contributions:

1) We present the first systematic study of date and time
bugs occurring in open-source software and extract sev-
eral insights based on a multi-dimensional qualitative
analysis (Section [[V).

2) Based on our insights, we provide concrete recommen-
dations to developers for strengthening current software
and also highlight the potential for further research using
static analysis for automatic bug detection (Section [V)).

3) We make our manually analyzed and fully annotated
dataset of 151 bugs and their associated fixes public to
promote further research on this topic (Section [VII).

II. BACKGROUND
A. Motivating Example—Why Date and Time is Hard

Consider a software developer attempting to perform a
simple task: writing a Python program that calculates the
number of hours until 5 pm tomorrow local time. They might
think of doing so via a series of reasonable steps: (a) get the
current local time via datetime.now (); (b) get the target
time by incrementing the date by one and setting the clock to
17:00:00; (c) compute the difference between the target and
current time, and return a value in hours. Figure @ shows
such an implementation, which we got by querying ChatGPT-
40 [[L1]] (other leading Al models produced the same solution).

from datetime import datetime, timedelta

def hours_until_5pm_tomorrow() :

# Get tl 1t date ar time

1

2

3

4 1 11

5 current_time = datetime.now ()
6

7

8

# Calculate the date for tomorrow

tomorrow = current_time + timedelta (days=1)
9
10

11

for 5 PM tomorrow

datetime (tomorrow.year, tomorrow.month,

12 tomorrow.day, 17, 0)

13

14 # Calculate the time difference

15 time_diff = target_time - current_time
16

17 # Convert the time difference to hc

18 return time_diff.total_seconds () /

(a) Almost correct implementation for calculating hours until
Spm the next day. The result is inaccurate when a DST transition
occurs between now and Spm tomorrow.

19 from datetime import datetime, timedelta, timezone
20
21 def hours_until_5pm_tomorrow() :

22 # Get the current date and time

23 current_time = datetime.now () .astimezone ()

24

25 # Calculate the date for tomorrow

26 tomorrow = current_time + timedelta(days=1)

27

28 # Set the time for 5 PM t rrow

29 target_time = datetime (tomorrow.year, tomorrow.month,
30 tomorrow.day, 17, 0, 0) .astimezone ()

31
32 # Calc

33 time_diff =

the time difference

target_time.astimezone (timezone.utc) -

34 current_time.astimezone (timezone.utc)
35

36 # Convert the time difference to hc

37 return time_diff.total_seconds () .

(b) A corrected version requiring time-zone-awareness for ad-
dressing the DST issue. When executed on March 9, 2024, at
11pm ET, this code correctly computes 17 hours.

Fig. 1: Python code to calculate the number of hours until
5pm tomorrow local time. The seemingly correct solution in[Ta]
was authored by OpenAI’s GPT-40 (variable names truncated).
The truly correct version in [Ib] is more nuanced; accurately
performing date/time computations is hard!

It turns out that this implementation is correct most of the
time; however, there is a critical edge-case bug. If the code
is executed in a location that observes daylight saving time
(DST) transitions, and such a transition occurs between now
and 5 pm tomorrow, the code will return an incorrect result!
For example, if this code were to be executed in New York
on March 9, 2024, at 11 pm, then the code would return
“18” whereas there are only 17 hours left until 5 pm the
next day due to the DST transition where clocks “spring
forward” by one hour at 02:00. The problem is that the time
differencing operator cannot account for DST changes when
time zone information is missing. Knowing this, one may
consider performing all computations in UTC; however this
cannot be the solution either—the current date in UTC would
be "March 10th”, so adding one day to a UTC timestamp



would also lead to incorrect results.

The correct solution requires performing time-zone-aware
arithmetic. Shown in Figure [Tb]is a solution that attempts this
by (a) using a representation tagged with the local time zone
to correctly perform calendar arithmetic (Lines 23] and [30),
and (b) using a representation in UTC to correctly perform
time differencing (Line [33). In general, time arithmetic (e.g.,
determining if A is within X hours/minutes/seconds of B) is
best done using a fixed reference (e.g., using a representation
like Unix time, which counts the number of seconds since an
epoch in UTC); whereas date arithmetic (e.g., determining if
A is within Y years/months/days of B) is best done using a
calendar-and-time-zone-aware representation.

Though Figure showcases one specific flawed imple-
mentation, many pitfalls can arise when computing durations
until a target time. Developers may neglect to use operators
that account for DST transitions, inadvertently mix naive and
time-zone-aware datetime objects, or err when construct-
ing new time-zone-aware datetime instances—potentially
creating non-existent times that Python still considers valid.
Our empirical study is motivated by the need to understand
the prevalence of these issues in open-source software.

B. Current Landscape

Python offers a range of libraries for date and time com-
putation, starting with its built-in datetime [12] library,
which provides support through various modules such as
datetime, zoneinfo, time, and calendar, and types
including date, time, datetime, tzinfo, timedelta,
and timezone. Despite its comprehensive support, develop-
ers often find the standard library unintuitive and hard to use
correctly [10} [13].

To address these challenges, several third-party libraries
have been developed. Pendulum [14] is one such library that
builds upon the standard library, claiming to offer cleaner and
more intuitive APIs. Another popular option is Arrow [15],
which not only provides standard date and time operations
but also supports so-called humanized representations (e.g.,
“2 days ago”) across numerous locales. The Whenever [16]
package provides an API that uses the (dynamic) type system
to enable time zone/DST-safe calculations. Libraries like Da-
teutil [[1'7]] and Pytz [18] offer powerful time zone extensions
to the standard library. Beyond these, there are several other
specialized libraries, such as Heliclockter |19, Maya [20],
Delorean [21]], Moment [22]], and Chronyk [23]], each introduc-
ing unique features and enhancements. While many of these
libraries are designed to interoperate with the standard library,
differences in usage patterns, operator semantics, and error
handling can be a source of confusion for developers.

III. METHODOLOGY

Open-source GitHub projects often report code bugs through
GitHub issues, which provide valuable information for our em-
pirical study. These issues contain details such as descriptions,
reproducibility steps, related issues, developer discussions, and
code-level fixes. We compiled a comprehensive dataset of

GitHub issues specifically related to date/time bugs, with all
data collected from GitHub before July 9th, 2024.

A. Data Collection Process

Our research examines the landscape of date/time bugs in
popular Python projects by systematically mining and filtering
relevant information from GitHub, as detailed below.

Repositories Selection: Our study considered repositories
that: (a) were created after 2014, (b) have over 100 stars, and
(c) primarily use Python for code and English for commu-
nication. Applying these filters using the GitHub GraphQL
API [24] resulted in 55,585 repositories.

We then focused on repositories performing temporal com-
putations, specifically those importing at least one of these
date/time libraries: Datetime, Arrow, or Pendulum. Each li-
brary has over 300 stars and is used by at least 10 repositories
identified earlier. We excluded lesser-known or infrequently
used libraries like Maya, Delorean, Moment, Whenever, He-
liclockter, and Chronyk. This filtering resulted in 22,132
repositories using widely adopted Python date/time libraries.

Keywords: To uncover date and time bugs, we compiled
a comprehensive list of keywords capturing relevant concepts
across various dimensions. These keywords guided our search
for potential date/time issues.

e« Module Names: datetime, arrow, pendulum, dateutil,

pytz (the last 2 are add-ons used with datetime)

e Units of Time: nanosecond, millisecond, microsecond,

second(s), day(s), week(s), month(s), year(s), epoch

o Python Methods: strptime, strftime, timestamp, utcnow,

fromtimestamp, localtime, timedelta

« Date and Time Concepts: timezone(s), gmt, utc, dst,

daylight, fold, leap

o Miscellaneous: elapsed, interval(s), duration(s)

Issue Compilation and Filtering: Utilizing the GitHub
GraphQL API, we scraped issues from each repository in
our dataset that included at least one of the aforementioned
keywords. This resulted in 26,967 issues, capturing their titles,
developer discussions, pull request and commit links, and tags.

However, not all of these issues are pertinent to our study.
Some may not be confirmed bugs, lack sufficient information,
or be unrelated to temporal computations. Therefore, we
refined our dataset using these filtering criteria:

¢ Bug-Related Terms: The issue’s title or tags must in-
clude “bug”, “fix”, or “wrong”, indicating it’s a bug rather
than a query or suggestion.

o Exclusion of Feature Requests: The issue must not
be labeled “enhancement” or “feature”, which typically
denote new feature requests.

o Closed Issues: The issue must be closed on GitHub,
confirming it has been resolved.

« Adequate Information: The issue must contain sufficient
information for analysis. We ensure this via a minimum
character limit for the combined content of the issue
title, description, and discussions. Through manual exper-
imentation with character limits of 250, 500, and 1,000



characters, we found that a threshold of 1,000 characters
offered the optimal balance and thus selected it for our
study.

« Referenced in Commits or Pull Requests: The issue
must be referenced in a commit or pull request, allowing
us to examine the resolved code to identify the bug’s root
cause.

B. Bug Selection

Following the final filtering step, we identified 9,669 issues.
While this dataset was more manageable, it still posed chal-
lenges for manual analysis. Not all issues were useful for our
study, as some were unrelated to date/time bugs, duplicate, too
complex, or had fixes in non-Python code—we term them as
false positives. Automatic elimination of these is not feasible
and manual filtering is time-consuming; so, we opt for a
strategy to use statistical heuristics to rank issues and then
perform manual filtering on a set of high-quality results.

To efficiently prioritize and categorize issues for detailed
analysis, we utilize Term Frequency-Inverse Document Fre-
quency (TF-IDF) [25], a key concept in information retrieval.
TF-IDF ranks documents by assessing the relevance of terms
based on their frequency in a document (term frequency)
and their uniqueness across the document collection (inverse
document frequency). This ranking allows our manual false
positive filtering step to be more successful on average.

First, we computed the inverse document frequency (IDF)
for each of our keywords on a representative corpus of issues
created by selecting 1,000 popular Python repositories and
gathering the 100 most recent issues from each. Then, for
each issue in our scraped dataset of 9,669 issues, we compute
the TF score for each of our keywords and combine it with
the precomputed IDF score, giving us the TF-IDF score for
that issue.

The TF-IDF metric prioritizes issues with multiple key-
words that are present more often in date/time-related bugs
than general software issues. The insight here is that date/time
bugs contain multiple distinguishing keywords (keywords with
high IDF scores) from our keywords list, hence receiving
a higher TF-IDF score, as compared to issues that are not
date/time bugs. For example, an issue on performance bugs
containing the phrase “elapsed time” will be pulled in our
scraping step. However, it is unlikely to contain many other
keywords from our list, resulting in a low issue TF-IDF score
and being deprioritized.

After computing the TF-IDF scores, we sorted the issues in
descending order and incrementally reviewed them in batches.
Note that these batches still contained false positives, which
we pruned as part of the manual process described next.

C. Classification Strategy

As demonstrated in our motivating example (Section [[I-A),
date/time bugs can be particularly challenging. Moreover,
issues with vastly different root causes and effects can exhibit
similar symptoms (e.g., an off-by-one error in dates/hours).

To capture these intricacies, we adopt a hierarchical label-
ing approach. First, from a requirements point of view, we
identify the date/time concept involved in the computation
that turned out to be buggy. We then identify the code-level
programmatic operations (e.g., Python APIs) that were being
used incorrectly. Lastly, recognizing that there are multiple
ways of misusing date/time APIs, we identify the type of
mistake made by the developer in the computation. This
hierarchical approach—identifying the conceptual gap, the
specific erroneous computation, and the human error—helps
us capture a multifaceted view of complex date/time bugs.
We also qualitatively assess whether the bug is obvious or an
obscure edge case, its impact on the software system, and the
complexity of fixing it. In total, we identified seven factors for
this study, detailed in Table Il

TABLE I: Factors studied for the date/time bugs.

Study Factor Description

Conceptual Category Based on the issue description, what are the
date/time concepts that are involved in the
problem developers were trying to solve?
What are the programmatic operations in the
Python code where the bug manifests?
Based on the fixing patch, what was the
mistake or misconception that led to the bug?
How challenging is it for a developer to
find this bug during development, testing, or
production runs?

What is the impact of the bug on the software
that runs the buggy code?

How big is the code change required to fix
the bug?

How logically complex is the code change
required to fix the bug?

API/Coding Category
Root Cause

Bug Obscurity

Bug Severity
Fix Size

Fix Complexity

We employed an open coding approach [26] to develop a
taxonomy for the factors Conceptual Category, API/Coding
Category, and Root Cause. For the factors Bug Obscurity,
Bug Severity, Fix Size, and Fix Complexity, we adopted an
ordinal scale with predefined categories: “small”, “medium”,
and “large” (additionally “very large” for Fix Size based on
observations). Note that we encountered two challenges in
objectively counting Fix Size: (1) Pull Requests (PRs) often
contain multiple commits, not all related to the bug; (2)
Individual commits can include changes not directly related
to the bug, such as code refactoring, fixes to other bugs, test
code updates, comment modifications, documentation updates,
and import changes. Simply counting the lines of code (LoC)
modified in the PRs would incorporate this noise. Therefore,
we opted for a manual review to subjectively categorize the
amount of changes needed for fixing the bug.

Sample Classification: To understand our analysis pro-
cess, let’s analyze the motivating example from Section [[I-A]
The program in Figure attempts to compute a duration
but produces an incorrect result when the duration overlaps
with a DST transition because the datetime subtraction
operator does not account for DST changes. We classify this
bug under the concepts “DST” and “Duration” (full list in
Fig.[3). The fixed version of this program shown in Figure
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Fig. 2: Distribution of projects selected in our study, show-
casing the number of bugs identified per project. The plot
illustrates that the majority of projects contribute a single
bug, with two outlier projects contributing 9 (Dateutil) and
16 (Pendulum) bugs.

reveals that original mistakes occurred when dealing with the
programmatic operations for “datetime construction” and
“date and time arithmetic” (full list in Fig. d). Ultimately, the
root cause of the bug was failing to perform time-zone-aware
computations or, in other words, “using naive datetime
objects incorrectly” (full list in Fig. [5)). The program depicted
in Figure [Ta] silently produces the wrong result, rendering the
bug highly obscure. The severity of the issue varies depending
on the context in which the computation is executed. Since the
resolution involves modifying code within a single function
and performing multiple timezone conversions, the fix is
categorized as moderate in both size and complexity. The
complete taxonomy is described in Section

The program depicted in Figure [la| generates an incorrect
result without any explicit indication, rendering the bug par-
ticularly elusive.

Study Setup: We began with four members of the research
team using an open coding approach to analyze and label is-
sues from our dataset in batches until no new classes emerged.
Each batch was subdivided into equal parts and assigned to
one of the six possible pairs formed by the four members.
Each pair analyzed their assigned bugs and created a list of
categories. We then collectively reviewed these categories and
agreed upon common definitions and a unified taxonomy for
each factor. We observed saturation in our taxonomies after
analyzing 200 issues. Next, we created a test set of 60 issues
(10 per pair) to check that no new labels emerged.

During the manual analysis process, we filtered out issues
that were deemed as false positives (i.e., not date/time bugs).
Overall, we analyzed a total of 260 issues originating from
144 unique open-source repositories and classified /57 true
date/time-related bugs from /02 distinct projects. Figure
illustrates the frequency of projects contributing varying num-
bers of bugs to our final dataset.

We used the true positives from the test set to measure inter-
annotator agreement using Cohen’s Kappa [27]. For ordinal
data, we applied the weighted Cohen’s Kappa to account for
the degree of disagreement. If a bug had multiple labels for

a factor, we resolved the ambiguity by focusing on the most
significant label, which we collectively agreed to assign as the
first label.

Result: We observed moderate to substantial agreement for
each of the factorsﬂ Conceptual Category (0.65), API/Coding
Category (0.68), Root Cause (0.57), Bug Obscurity (0.49), Bug
Severity (0.56), Fix Size (0.66), and Fix Complexity (0.53).

D. Threats to Validity

Selection Criteria: Our selection criteria focused on ana-
lyzing bugs that were closed and contained adequate informa-
tion. This could pose a threat to validity since we exclude open
or ongoing bugs. However, concentrating on real-world fixed
bugs enables us to draw concrete conclusions about the study
factors and this approach aligns with multiple other empirical
studies [28} 29, 130, [31]].

Representativeness of Selected Bugs: Our study of 151
bugs offers meaningful contributions to our understanding of
date/time bugs. However, the limited number of bugs analyzed
could threaten external validity. To address this concern,
we performed manual analysis until our taxonomy reached
saturation. Additionally, to mitigate potential bias stemming
from date/time library bugs, we provide visual illustrations
of how different project types contribute to each label in our
taxonomy. Our time and effort-intensive manual analysis of
151 bugs (requiring ~520 person-hours) aligns well with the
standards of state-of-the-art bug studies [28, 29, [31], which
have analyzed between 100 and 400 bugs.

Generalization Across Programming Languages: Our
study focuses on the Python programming language; this could
threaten external validity as our results may not generalize to
other languages with varying date/time representations and li-
braries. For instance, JavaScript’s Date class and Java’s (now
outdated) java.util.Date classes utilize an epoch-based
system, whereas Java’s java.time classes provide com-
prehensive API support for both epoch-based and calendar-
based date/time representations. These contrast with Python’s
default calendar-based datet ime module and the differences
in internal representations may give rise to unique bug patterns
and distributions. Although our results may not be universally
applicable, our study remains valuable as it offers meaningful
insights into date/time bugs within the ecosystem of the most
popular programming language [32].

Manual Analysis: Our manual analysis of bugs acknowl-
edges the possibility of misclassifications due to ambiguity or
inherent complexity of date/time bugs. To mitigate this, we
ensured that any labeling disagreements among the research
team members were effectively resolved through collaborative
discussions until a consensus was achieved.

IV. RESULTS

In this section, we present the results of our bug analysis
and the taxonomy we developed for each of the seven afore-
mentioned study factors.

Ifor each factor, we calculate the inter-annotator agreement scores for all
annotator pairs and then report averaged scores.
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Fig. 3: Distribution of bugs across identified conceptual cat-
egories. The plot reveals that problems related to time zones
are the biggest contributors to bugs.

Our dataset includes bugs from two sources: client projects
that utilize date/time libraries for temporal calculations and
the date/time libraries themselves (“Dateutil”, “Pendulum”,
“Maya”, “Chronyk”, and “Arrow”). To illustrate the distribu-
tion of bugs, we present stacked bar charts that delineate the
contributions of each project type.

A. What date/time concepts do we observe in the bugs?

Figure 3] illustrates the distribution of bugs across seven dis-
tinct date/time concept categories we identified by analyzing
only their issue descriptions. We next describe these in detail.

Time Zone: Approximately 53.6% of the bugs are as-
sociated with time zones. Errors can arise while: display-
ing date/time information localized to a specific time zone
(e.g., twintproject/twint#401), working with task/job schedul-
ing (e.g., apache/airflow#29576 and PrefectHQ/prefect#1053;
in the latter, a “test [...] fails whenever it’s run between 9-
9:30AM EST”), or when working with relative dates (e.g., ken-
nethreitz/maya#36, which incorrectly computes “tomorrow”
for a UTC value without considering the local calendar date).

String Representation: 23.2% of bugs occur when format-
ting date/time information for printing or writing to a database
(e.g., googleapis/python-bigquery#392, where precision is lost
when inserting a specific timestamp to Google BigQuery) or
parsing input date and time information for various tasks (e.g.,
pyopenapi/pyswagger#83, which drops milliseconds from in-
put strings, and brython-dev/brython#1849, which could not
parse double-digit month values).

Timestamps: Python supports epoch-based date and time
representation accurate to the microsecond. /3.9% of bugs
are related to timestamps and arise when developers convert
timestamp information from one time zone to another (e.g.,
holoviz/holoviews#2459| ranaroussi/yfinance#545) or interpret
timestamp information incorrectly (e.g., aimhubio/aim#1084
and googleapis/python-bigquery-pandas#261, both of which
incorrectly determine whether a stored timestamp is UTC).

Calendar Date: 9.9% of the bugs are related to calendar
dates. Bugs that deal with only dates can arise while han-
dling historical data (e.g., SEED-platform/seed#1439 related to
buildings built before 1900) or ambiguous/incomplete values

Datetime (Construction)
Parsing/Formatting
Time Zone Manipulation
Datetime (Arithmetic)
Datetime (Projection)

Delta API

APl / Coding Categories

Project Type
m— Library

Timestamp API
Client

0 20 40 60 80

Bug Count

Fig. 4: Distribution of bugs across identified API/coding
categories. The plot indicates that inaccurate construction of
datetime objects is the most frequent source of bugs.

(e.g., parsing the year “85” as in sdispater/pendulum#686), or
while dealing with ordinal days of the year/month/week (e.g.,
sktime/sktime#3 188, which corrupted time-series data).

Duration: 8.6% of bugs are related to duration computa-
tions such as dealing with periodic intervals (e.g., stringerthe-
ory/traces#217, which produces an unexpected time series)
or performing arithmetic (e.g., thombashi/DateTimeRange#44,
which deals with subtracting negative durations from a date).

DST: only 7.9% of bugs are due to DST changes. On certain
dates, specific time zones may experience instances where
certain times either do not exist or occur twice. It is crucial for
programs to handle these situations gracefully, as failing to do
so can result in crashes or, even worse, silent errors. DST can
affect any kind of arithmetic computations on date/time objects
like task scheduling (e.g., |kiorky/croniter#56) or calendar
manipulations (e.g., sdispater/pendulum#768).

Other: About 15.2% of bugs in our study are general
code bugs not specific to any date/time concept. For exam-
ple, bugs that arise due to deprecated date/time APIs (e.g,
googleapis/python-storage#1194) or hard-coded return types
(e.g., jsdispater/pendulum#203) are tagged with this label.

Insight #1: Time zones represent the most significant
source of bugs in our study (53.6%), indicating they are
a common pain point for developers when performing
date/time computations. Interestingly, while frequently
discussed in grey literature [2} |10} 133} 34], only a small
fraction (7.9%) of bugs we studied are related to DST.

B. What programmatic operations are involved in the buggy
Python code?

Figure []illustrates the seven distinct categories of program-
matic operations that we identified as contributors to date/time
bugs in our dataset. We explore these in detail below:

Datetime (Construction): A majority of the bugs, ap-
proximately 58.9%, fall into this category. Bugs can arise when
one creates datetime objects in the local time zone using
datetime.now () and then misinterprets them as belonging
to the UTC time zone (e.g., |googleapis/python-storage#244).
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Bugs can also arise when one incorrectly calls the constructor
for datetime objects, datetime.datetime (). For ex-
ample, in |mverleg/pyjson_tricks#41}, the Pytz time zone API
is incorrectly being used in the constructor leading to a time-
zone-aware object being created with the wrong time zone
information.

Parsing/Formatting: 30.5% of bugs were related to in-
correct handling of string representations. More specifically,
86.9% of these bugs were due to errors while handling
programmatic string formats. For example, a parsing error
occurs in kayak/pypika#152 due to an error in the regex being
used leading to trailing zeros in intervals to be completely
omitted (e.g., 100 seconds was parsed as 1 second)! Bugs can
also arise while formatting or serializing data to strings. For
example, in skarim/vobject#32 an error occurs when trying to
serialize a non-existent datetime. The remaining /3.1% of
the bugs arise while trying to handle non-standard humanized
string formats. For example, in |[KoffeinFlummi/Chronyk#5, a
day out-of-range error is thrown when parsing the humanized
string “in 4 months” or “3 months ago” on the 31% of May.

Time Zone Manipulation: /9.2% of the bugs arise while
trying to convert date/time information from one time zone
to another (e.g., rpy2/rpy2#634) or while comparing distinct
Python objects that represent the same logical time zone (e.g.,
dateutil/dateutil#151| or [pydantic/pydantic#8683)).

Datetime (Arithmetic): /5.9% of bugs arise while per-
forming arithmetic operations on date/time information. For
example, in agronholm/apscheduler#911| due to incorrect cal-
culations, every alternate task trigger is skipped. Another
example is sdispater/pendulum#768| where, due to a DST-
related corner case, adding one day to a datetime object
does not change the date but rather adds 23 hours!

Datetime (Projection): /3.2% bugs occur while op-
erating on individual components of a datetime object.
For example, in jsdispater/pendulum#152, there is an off-by-
one-second error due to an incorrect choice for the internal
representation of seconds in a datetime object. Similarly,
a NoneType object-dereference error arises in |dateutil/dateu-
til#132 when the code tries to access the time zone information
of a time object (time objects do not have time zone
information associated to them).

Delta API: About /2.6% of bugs deal with computations
involving durations. For example, due to a calculation error
in [sdispater/pendulum#475, adding a duration of one month
to other duration objects has no effect. Another example
is model-bakers/model_bakery#322, where a type mismatch
error is raised when trying to add a timedelta to a time-
zone-aware datetime object.

Timestamp API: 9.9% of bugs fall into the last category
of our taxonomy. These are bugs that arise while perform-
ing computations with timestamps. Examples include dora-
metrics/pelorus#662| where conversion of datetime objects
to timestamps fails in the presence of time zone information.
Similarly, in python-social-auth/social-core#128 the expiration
duration calculations produce a wrong result due to mixing
up of UTC localized datetime objects with datetime
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Fig. 5: Distribution of bugs across the identified root causes.
Incorrect use of naive datetime objects emerges as the
largest category.

objects returned by datetime.fromtimestamp () which
use local time zone information.

Insight #2: Despite the inherent complexities of
date and time arithmetic [16, 35], our analysis reveals
that the most prevalent bugs arise from the incorrect
construction of datet ime objects. This underscores the
essential need for accuracy in constructing datetime
objects, as initial errors can compromise data integrity
and undermine subsequent operations’ reliability.

C. What kinds of errors lead to the date/time bugs?

Figure [5] shows the taxonomy we developed for the various
root causes of date/time bugs after analyzing their fixes.

Using Naive Datetime Incorrectly (27.8%): In lagron-
holm/apscheduler#133] a bug arises due to the mixing of naive
and time-zone-aware datet ime objects. Specifically, the task
scheduler operates in UTC but the system time is in a different
time zone. This causes local time to be incorrectly treated as
UTC leading to massive errors in task scheduling, literally the
main job of the entire application! Other examples, like pallets-
eco/flask-session#85|, include the use of naive datetime
objects when the application should have been using time-
zone-aware objects.

Outdated/Deprecated APIs (15.2%): Using
deprecated APIs can cause problems in  the
future. For example, nextcord/nextcord#1062 moves
away from using datetime.utcnow () and
datetime.utcfromtimestamp () methods,  which

are deprecated in Python 3.12, and switch over to a
time-zone-aware API.
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Dropping Time Zone Information (13.9%): In
googleapis/google-cloud-python#131, an issue arises where
one of the APIs discards time zone information in its
internal representation, while another API consistently uses
time-zone-aware objects. This discrepancy leads to type errors
during comparisons. Other examples of related issues include
failing to write time zone information to a database or not
parsing it from the provided format string when constructing
datetime objects.

Unintuitive Arithmetic (12.6%): For example, in jsdispa-
ter/pendulum#475| the ‘duration.in_days()’ methods in Pendu-
lum, fails to account for all the components of the datetime
object (years, months, seconds...) and ultimately produces
incorrect results.

Precision of Representation (11.3%): In
influxdata/influxdb-client-python#455, the code loses
nanoseconds information due to the internal representation
not being precise enough. On the other hand, in
art049/odmantic#99, the creation of a model instance
containing datetime fields fails if the microseconds are
between 999500 and 999999 because the information is more
precise than required!

Incorrect Format Assumptions (11.3%) A bug in scrap-
inghub/dateparser#615| involves an incorrect assumption on
the format of input date/time strings; specifically, it assumes
that the time zones offsets cannot contain double digits.
The regex code involved in parsing silently fails! Similarly,
pyopenapi/pyswagger#83| assumes ISO 8601 timestamps do
not contain milliseconds leading to milliseconds as well as
time zone information being dropped! |dateutil/dateutil#292
occurs since the strftime () method fails when the input
datatime objects contain time zone information as a tzfile.

Comparing Time Zones (5.3%): As discussed earlier, da-
teutil/dateutil#151 and pydantic/pydantic#8683 involved issues
with equality-based comparisons across distinct Python objects
representing the same logical time zone.

Incorrect API Usage (4.6%): For example, in agron-
holm/apscheduler#444 incorrectly limits the valid inputs for an
interval to be integers; however, the underlying timedelta
API accepts floats. In {trinodb/trino-python-client#366, Pytz
time zones are used incorrectly (Localize () is not invoked
on the datetime objects) resulting in the time zone being
set as Local Mean Time (LMT) and the offset becoming 53
minutes.

OOB Datetimes or Timestamps (4.6%): In
jborean93/smbprotocol#114, an OverflowError can arise
while trying to parse timestamps from file headers since they
can contain values greater than the max datetime constant
set in Python (9999-12-31T23:59:59.9999997).
Similarly, the issue in SEED-platform/seed#1439| occurs
when the year 1888 is passed to strftime () which
requires years to be at least 1900.

Unspecified Fold (2.6%): Date/time computations can re-
turn incorrect results due to the lack of information to disam-
biguate wall-clock values during a DST transition where the
clock rolls back. For example, in mverleg/pyjson_tricks#89 the

bug arises because there is no fold attribute associated with
datetime objects and in sdispater/pendulum#767 the bug
arises because the deepcopy () method does not account
for the correctly populated fold attribute.

General (11.3%): For example, dateutil/dateutil#216/is a is-
sue that occurred since the windows specific tzwinlocal ()
API failed to work with the Dateutil in cases where
tzwinlocal () pointed to time zones observing DST. An-
other example is |sdispater/pendulum#167 where the code fails
in the Windows 10 bash shell due to an unhandled edge case
of the time zone string being empty. Other types of general
root causes include hard-coding return types or compatibility
issues with different library versions.

Insight #3: The root causes of date/time bugs are
diverse, but often involve nuances about date/time library
APIs—such as assumptions, default conventions, or edge-
case behavior—that can only be understood by carefully
analyzing documentation and relating the information to
the application context in terms of program requirements,
operational expectations, and internal design choices.

D. What is the nature of the bugs and their fixes?

Figure [6a] captures the distribution of all the 151 bugs from
our study along the different ordinal study factors. We describe
each of these factors in detail.

Bug Obscurity: This term describes the level of difficulty
involved in detecting or triggering a bug. 59.6% of bugs exhibit
a “Low” obscurity level, which we assigned to issues where
the buggy behavior manifests upon the very first execution of
the code, regardless of input. For example, googleapis/python-
storage#1194/ concerns the usage of outdated APIs that con-
sistently raise a DeprecationWarning upon execution.
Approximately 31.7% of bugs fall under a “Medium” obscurity
level, a label we assigned bugs that only manifest under certain
inputs but when they do the failure is immediately apparent
(e.g., due to an exception). The issue [weewx/weewx#356
pertains to code that is affected by DST changes occurring at
midnight, in which case the program fails with an explicit error
message. Finally, 8.6% of bugs are categorized under a “High”
obscurity level; these represent edge-case bugs that can fail
silently (e.g., by only producing a wrong output), making them
challenging to detect. For instance, sdispater/pendulum#74
involves an off-by-one microsecond error that occurs silently
and only in specific time zones.

Bug Severity: The severity of a bug is primarily determined
by reviewing developer discussions and, if available, GitHub
issue tagsﬂ Approximately 25.8% of bugs are classified as
having “Low” severity, indicating that an error occurs dur-
ing a non-critical task. Referring back to |googleapis/python-
storage#1 194, deprecated API-related bugs typically only trig-
ger warnings rather than causing errors or exceptions. About
62.9% of bugs have a “Medium” severity level, suggesting that

2In case of insufficient data, we add a conservative label.
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(a) Breakdown of bugs by obscurity, severity, localization, and fix
complexity. Nearly 60% of bugs demonstrate low obscurity, ~74%
have a medium or high impact, ~82% are localized within a single
function, and only ~70% require complex fixes.
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(b) Correlation matrix illustrating relationships between ordinal study
factors. The data shows a slight negative correlation between bug
severity and obscurity (-0.1/7), and a minimal correlation between
bug severity and fix size (0.08), suggesting that the potential impact
of tooling for detecting/fixing shallow bugs should not be discounted.

Fig. 6: Distribution and analysis of 151 bugs across various
ordinal study factors. Insights emphasize the efficacy of Static
Analysis in identifying impactful bugs.

while some essential functionality is affected, workarounds are
available. In stringertheory/traces#217, there’s an issue when
handling intervals containing datet ime objects whose hour
attribute is set; however, there are various ways to mitigate
this error (e.g., normalizing all objects to remove the hour
attribute). Lastly, 71.3% of bugs are labeled as having “High”
severity; these are assigned to bugs that disrupt critical func-
tionality of the parent project, with the only remedy being a
code fix. For example, in aws/aws-sdk-pandas#2410, the AWS
S3 API fails to read an Apache Parquet object as a Pandas
dataframe when records contain UTC-annotated timestamps.

The issue kiorky/croniter#56, in a library that allows using
Cron-like job scheduling syntax in Python, is classified as both
high severity and high obscurity since it produces the wrong
schedule when run during a DST transition.

Fix Size: This factor assesses the size of the bug’s related
code fix in terms of the number of lines of Python code,
serving as a proxy for the effort required to resolve the
issue. Fix sizes are determined by manually reviewing pull
requests to exclude potential code changes unrelated to the bug

(e.g., updating test code). Each bug is categorized as follows:
37.1% of bugs are annotated as “Low,” indicating that the fix
involved a single line of Python code or the same single-line
syntactic change repeated multiple times. Approximately 45%
of bugs are labeled as “Medium,” signifying multiple changes
within the same Python function. Changes that affect multiple
lines across various functions within the same Python file are
designated as “High” (10.6%). Finally, bugs requiring exten-
sive modifications across multiple Python files are labeled as
“Very High” (7.3%). For example, in |snowflakedb/snowflake-
connector-python#926, the fix for an off-by-one microsecond
bug required time-duration calculations across multiple files
and hundreds of lines of code to be updated.

Fix Complexity: This metric evaluates the logical com-
plexity required to modify code to correct a bug. Each bug
is labeled by analyzing the specific code changes made in
the fix. Approximately 56.3% of the bugs are labeled as
“Low”, indicating that the fix is straightforward. In nautobot/-
nautobot#2426, a job scheduling bug arises due to indexing
mismatch on weekdays, i.e. datetime treats Monday as
the first day of the week whereas crontab treats Sunday
as the first day of the week. The fix involves a single-line
change to the computed index. A “Medium” label is assigned
to 33.8% of the bugs, where the fix involves resolving a
single logical error within the code. For example, Pycord-
Development/pycord#2187 a task repeats a hundred billion
times because the time zone is not set to UTC. The fix
involves making use of consistent time zone information
during initialization, requiring updates to a few conditional
predicates. Finally, a “High’ label is given to 9.9% of the bugs,
which require addressing multiple logical errors throughout
the program. For issues like snowflakedb/snowflake-connector-
python#926 (previously discussed), the fix involves redesign-
ing methods, refactoring code, and updating arithmetic logic.

Correlations between Factors: Having done the labeling,
we wondered if severe bugs were hard to detect and/or fix.
Figure |6b| presents the correlation plot for the ordinal factors
in our study. Interestingly, we found that the severity of a
bug and the difficulty of detecting it exhibit a slight negative
correlation (-0.17). Additionally, the amount of code altered
to rectify a bug is nearly uncorrelated (0.08) with the severity
of the bug being addressed.

Insight #4: Our analysis, as depicted in Figure @
indicates that a significant proportion (~60%) of bugs
are readily detectable due to low obscurity, while ap-
proximately 82% of the fixes are confined within a single
function’s scope, suggesting a high degree of localization.
Moreover, Figure [6b] shows that severe bugs are not
necessarily hard to detect and/or fix.

V. DISCUSSION

What are the implications of our findings for software
engineering practice and research? We next describe two ways
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in which the insights uncovered from our empirical analysis
can be used to improve software quality in the future.

A. Proactively Identifying Bugs via Domain-Specific Testing

Insight #4 suggests that a majority of the studied date/time
bugs (~60%) manifest readily when the erroneous code is ex-
ecuted with any input; so, in theory, they should be detectable
during continuous integration via regular testing with compre-
hensive test suites that have sufficient code coverage and high-
quality test oracles. Of course, the projects in our study lacked
such tests, which is why the bugs went undetected in the first
place. Moreover, another ~32% of the bugs were classified as
medium obscurity; that is, they can be detected immediately
(e.g., via a crash) when the buggy code is executed with the
right inputs. What, concretely, can developers do to proactively
identify such issues?

We look to Insight #1, which suggests that a large proportion
of the studied date/time bugs involve dealing with either time
zones or string representations, as well as Insight #2, which
suggests that most mistakes occur when constructing date/time
values. So, we make the following three recommendations
to harden software against common but shallow classes of
date/time bugs.

1) Maximize coverage of temporal characteristics with
domain-specific test cases and environments: To be-
gin with, test suites should be comprehensive enough
to include coverage of critical date/time computations.
Moreover, for every date/time value that is derived either
from the system clock or from an external input (such
as a file, database, or web form) the test suite should
include cases that vary characteristics such as calendar
date and time zone. System-clock-related operations can
be mocked using Python libraries like Freezegun [36]
and OS-level utilities such as Libfaketime [37]. Many
bugs in our dataset could have been identified if the
corresponding code was simply executed and validated
from a particular time zone.

2) Harden parsing and serialization logic via property-
based testing (PBT): For code that converts between
date/time values and strings via files or databases,
property-based testing using libraries such as Hypoth-
esis [38] may be effective at validating round-trip
invariants—for example, that a sequence of first serial-
izing then parsing (or vice versa) date/time values retains
the original value. Several bugs in our dataset could have
become evident if such a round-trip property had been
checked for any input.

3) Use random fuzz testing for discovering edge-case
bugs: Many of the bugs related to out-of-bounds values
(e.g., years before 1900), precision issues (e.g., fractional
microseconds), and several types of time-zone and DST-
related issues could potentially be detected via a simple
form of fuzz testing—simply executing code with ran-
domly sampled input values. The random input genera-
tion can be achieved with PBT tools such as Hypothesis,
but for these types of bugs no special oracle is needed;

simply checking for the absence of run-time exceptions
may be sufficient to catch the low-hanging fruit.

We note that the high-obscurity bugs (i.e., those that fail
silently) comprise less than 10% of the overall bugs we
studied; moreover, as per Insight #1, less than 8% of the bugs
were related to DST. While it is possible that these types of
bugs indeed occur rarely, it is also possible that such bugs are
simply under-reported because of the fact that they are hard to
detect and manifest infrequently in production. In fact, such
bugs may be lying dormant in current projects. We next turn
to ways in which such bugs could possibly be uncovered using
static program analysis.

B. Uncovering Dormant Bugs via Static Analysis

Insight #4 indicates that many bugs can be traced to
just one or a few lines of code within a single function.
We speculate that static analysis tools could be useful for
identifying common classes of dormant date/time bugs through
syntax-based pattern matching. To explore these implications,
we conducted a prototype evaluation using an off-the-shelf
pattern-based static analysis tool to find specific categories of
date/time bugs.

Case Study—Using CodeQL to detect datetime
construction bugs: We employ the CodeQL [39]
tool to identify date/time construction errors that
may lead to computations with buggy edge-case
behavior: (a) Deprecated API Usage: flags the use of
outdated methods like datetime.utcnow() and
datetime.utcfromtimestamp (), which return
naive (i.e., time-zone-unaware) objects representing UTC
time—these are dangerous because other Python library
functions treat any naive timestamps as representing the
user’s local time (which may be different from UTC);
(b) Custom Fixed Time Zones: detects the use of custom
fixed-offset time zones that ignore DST changes (e.g.,
“UTC-04:00" instead of “US Eastern Time”) which if
combined with duration arithmetic can produce incorrect
results; and (c) Partially Replacing Components: identifies
operations where objects are improperly constructed by
partially modifying individual date components (such as year,
month, or day)—these operations can fail if the result is a
non-existent value.

We ran these static analyses on 1,000 randomly selected
GitHub repositories from our dataset, identifying several dor-
mant bugs. Our CodeQL query for deprecated API usage
raised 617 alerts—these should all be true positives, as dep-
recated APIs are inherently problematicﬂ The fixed-offset
time zone query identified 23 results, with only 1 being an
actual bug which we reporte(ﬂ; the rest were false positives
which we manually identified by observing the context. For
example, in [intel-extension-for-transformers a custom fixed-
offset time zone of UTC+8 was used specifically for Shanghai

3Filed issues |GoogleCloudPlatform/cortex-data-foundation#78| and [tylere-
bowers/Schwabdev#23|
4Filed issue XzwHan/CARD#24,
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(indicated by a string literal); this is not a bug because
China does not observe DST changes. The query for incorrect
partial replacement returned 37 results, of which only 2
were true positives which we reporte False positives were
again identified by manual analysis. For example, one of the
true bugs we found in [stocks prediction module involved
computing a date exactly two years ago from today via the
expression “now () .replace (year=now () .year-2)";
this is a bug since it can fail when executed on a leap
day (Feb 29)! In contrast, our analysis flagged a similar
replace operation in |clangen, but this was not a bug:
“date.today () .replace (year=2000)" always works
because the year 2000 is a leap year.

Implications: Pattern-based static analysis can identify code
smells, but distinguishing true bugs from false positives
requires analyzing additional context from related software
artifacts. This aligns with our Insight #3, highlighting that
context is crucial for identifying bugs. Further research is
necessary to develop advanced techniques that can incorporate
contextual information to accurately detect true bugs.

VI. RELATED WORK

To the best of our knowledge, this is the first academic effort
to systematically study software engineering bugs related to
date/time computations.

Grey Literature: The difficulties of getting temporal com-
putations right are known to developers. There are articles
documenting the incorrect assumptions programmers often
make about date/time-related computations [8, 9]]. There also
exist articles that describe the nuances of different Python
date/time libraries and their semantics [10} 135} 40]. Developers
often write about specific problems they faced and their
learnings [13, 41, 42, 43]]. We believe that this body of
literature serves as a motivating factor for our comprehensive
and systematic study, which aims to illuminate the landscape
of date/time-related bugs and identify strategies for enhancing
the reliability of software systems.

Academic Research: Despite the existence of considerable
grey literature, date/time bugs have received relatively little
attention in academic research. Some prior work focused on
detecting well-defined date-related bugs, such as the Y2K
problem with string formats [44] and the Y2038 problem re-
lated to 32-bit Unix timestamps [45} |46]]. Database researchers
have studied various aspects of storing and querying temporal
values [47, 48, 49, 150, [51]]. Recently, Monat et al. [52]
formalized semantics for date and duration arithmetic and
demonstrated its application to verifying legal texts. We are
not aware of any tooling for symbolically reasoning about
arbitrary date/time computations in general-purpose languages
like Python.

Empirical Studies and Bug Detection Tools: Numerous
studies on software bugs have proven invaluable for enhancing

SFiled issues |Leci37/TensorFlow-stocks-prediction-Machine-learning-
RealTime#34| and |13812851221/-rxrw-daily_morning#31}

the reliability of software systems. Researchers have investi-
gated the causes of bugs in cloud systems [53}154]], infrastruc-
ture as code environments [28]], and open-source projects [33].
Insights gained from these studies have often led to the
creation of innovative bug-detection tools that significantly
improve system reliability [56]. Drawing inspiration from
these empirical studies, we aim to contribute to strengthening
the correctness of the date and time computations in software.

VII. DATASET AVAILABILITY

Our fully annotated dataset and analysis scripts are avail-
able at |https://github.com/cmu-pasta/date-time, containing: (1)
scripts for extracting and ranking likely date/time bugs (Sec-
tion , (2) the curated dataset of 151 bugs with fix links
and annotations across 7 study factors (Section , and (3)
CodeQL queries and scripts used to run them on 1,000 random
repositories (Section [V)).

VIII. CONCLUSION

We conducted the first in-depth systematic study of date/-
time bugs in open-source software. Our qualitative analysis on
151 bugs from Python-based GitHub projects revealed several
key insights: most bugs (53.6%) are related to time zones,
with incorrect construction of datetime objects being the
primary source of error (58.9%). Additionally, many errors
stem from misconceptions about library API behavior. Lastly,
most bugs (~82%) are confined to a single function and
are easily fixable; based on this finding, we hypothesize that
static analysis tools could effectively detect date/time bugs
and that such bugs can potentially be fixed automatically.
We also made concrete recommendations to developers for
strengthening their software against temporal computation
bugs via automated testing strategies; for example, simply
increasing test coverage and having appropriate oracles could
have revealed ~60% of the bugs we studied, whereas time-
zone-mocking or property-based/fuzz testing can potentially
uncover other input-dependent bugs as well. Our publicly
available dataset aims to benefit researchers and practitioners,
contributing to more reliable software systems and inspiring
new research directions.
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