语音信号时域分析

本文介绍了语音信号时域分析的关键技术,包括短时能量、短时幅值、短时过零率、短时自相关和短时平均幅差。通过对语音信号使用矩形窗和汉明窗进行分帧,计算这些特征来揭示语音的动态特性。短时能量、幅值和过零率提供有关信号强度和频率变化的信息,而自相关和平均幅差则用于捕捉信号的相关性和幅度变化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1. 短时能量

2. 短时幅值

3. 短时过零率

4. 短时自相关

5. 短时平均幅差


语音信号的时域分析是直接对语音波形进行处理或者估计得到一系列随时间变化的特征。时域分析建立在语音的短时不变性的基础之上,即在较短时间内语音各种特性是不变的。为了进行短时分析,需要将语音进行分帧,每一帧会有部分重叠,如下图所示。

一般通过窗函数将语音分帧,常用的窗函数有矩形窗和汉明窗,其中矩形窗定义为:

在矩形窗中,所有采样点的权值是一样的均为1,其时域形状和频域响应分别如下:

汉明窗定义为:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值