WebRTC AEC 流程解析

本文介绍了WebRTC的声学回声消除(AEC)算法,主要包括时延估计、PBFDAF线性回声消除和非线性处理(NLP)。AEC通过频域自相关方法进行时延估计,采用PBFDAF进行线性处理,通过NLP处理残余回声,以实现高效的声音回声消除。WebRTC AEC的效果受硬件影响,需要不断调试参数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今天我们要介绍3A算法中最难的一个算法,也是WebRTC流程解析这个系列的最后一个算法,声学回声消除(Acoustic Echo Cancellation,AEC )。如果读者对WebRTC有一些了解的话,就知道WebRTC的AEC算法大致可以分为三个部分:时延估计、线性回声消除、非线性处理。

I. Introduction

回声消除的简单原理前面已经有介绍过了,可以有参考基于卡尔曼滤波器的回声消除算法。WebRTC AEC的时延估计使用了频域自相关的方法。线性部分采用了分块频域自适应滤波器(Partitioned Block Frequency Domain Adaptive Filter, PBFDAF),这个滤波器在Speex中称为分块频域波器(Multidelayblock frequency Filter,MDF), 其实它们原理是一样的。有所不同的是Speex的AEC使用了两个滤波器(前景滤波器和背景滤波器)因此其线性回声消除部分性能更好一点,但是AEC3也引入了两个滤波器,这里就不展开讲了后面有机会再介绍。最后通过计算近端信号、误差信号和远端信号的频域相关性来进行的非线性处理(NonLinearPro

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值