语音相似度评价

语音相似度评价通过动态时间规整(DTW)算法评估语音相似性,DTW考虑时间维度,适用于说话人识别和语音识别。与欧式距离相比,DTW在对齐时间序列后能提供更好的聚类效果。本文介绍了DTW的基本原理、动态规划求解方法,并通过实验展示了DTW在处理音频样本时的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

语音相似度评价是用于测量语音之间的相似程度,常使用的算法是动态时间规整(Dynamic time warping,DTW),其原理是通过对齐时间序列来评估它们之间相似性。DTW是一种基于对齐的度量(alignment-based metric)与常见的欧式距离不同,DTW考虑到了时间维度上的信息,因此常用在信号处理领域,比如说话人识别,语音识别等。

​下面举个例子解释为什么要用DTW而不是欧式距离,这里我们有一个时间序列的数据集,包含了一些不同的样式。如果我们要对其进行分类,简单的方法就是使用聚类算法,首先采用欧式距离作为度量,我们可以得到如下的结果:

​容易发现在第二类中存在一些格格不入的样式;我们看下采用DTW聚类后的结果:

​可以明显的发现,DTW聚类后的结果,每个类别的差别(类间聚类)比较小。

Dynamic Time Wrap

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值