突破压缩极限的AI语音编解码器

本文介绍了谷歌的Lyra语音编解码器,这是一种利用深度学习技术实现的非常低比特率编码器,旨在在保持可理解性的同时减少带宽使用。Lyra每40ms提取160维log Mel-spectrogram特征并量化到3kbps。尽管高频部分可能丢失,但低频部分得以保留,确保语音清晰。实验显示,Lyra在压缩音频的同时能有效抑制背景噪声。文章探讨了Lyra在时间和模型复杂度方面的挑战,并提出了改进方向。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

I. Speech Codecs

语音编码的目的是在保持语音质量的前提下尽可能地减少传输所用的带宽,主要是利用人的发声过程中存在的冗余度和人的听觉特性达到压缩的目的。经过了多年的发展,目前语音编解码器大致可以分为以下几类:

  1. 波形编码,将时域波形经过采样量化编码,常见的就是PCM编码格式

  1. 参数编码,根据人的发声机制建立数学模型,然后对语音进行压缩,常见的是LPC-10

  1. 混合编码,结合波形编码和参数编码的压缩方式,常见的AMR等

  1. 深度学习编码,利用神经网络将语音编码成隐向量,然后利用神经网络将其恢复成语音信息,微软的Satin以及今天要介绍的Lyra就是其代表

虽然目前很多领域仍是直接把PCM封装成IP包进行传输,但是在带宽限制的领域,如VoIP语音会议,语音编解码是较为关键的技术之一。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值