浅谈人工智能之DB-GPT(番外篇)Chat Excel功能示例

浅谈人工智能之DB-GPT(番外篇)Chat Excel功能示例

当我们安装完成DB-GTP以后,我们就可以对该功能进行使用,本文以Chat Excel功能未示例,介绍DB-GPT的强大功能。

Excel准备

首先我们准备一份Excel,该Excel内容来源于课程
https://edu.csdn.net/learn/39533/640680?spm=1002.2001.3001.4157Chat Excel应用
第一步:文件上传,点击探索广场
在这里插入图片描述
第二步:选择Chat Excel
在这里插入图片描述
第三步:点击上传图标,上传我们的Excel
在这里插入图片描述
第四步:当文件上传以后,我们可以看到大模型会分析我们的Excel内容
在这里插入图片描述第五步:我们此时就可以通过自然语言跟我们的Chat Excel进行交互
在这里插入图片描述
至此功能示例完成。

### DB-GPT `chat_db` API 使用教程 #### 初始化与环境配置 为了使用DB-GPT中的`chat_db`功能,需确保已按照官方指南完成DB-GPT部署并启动服务。可以通过执行样例数据加载脚本来验证环境是否正常工作[^1]。 ```bash bash ./scripts/examples/load_examples.sh ``` #### 调用API接口 调用`chat_db` API前,确认已经成功进入了DB-GPT交互界面,在线对话功能应处于可用状态[^2]。以下是Python代码示例来展示如何通过HTTP请求的方式访问`chat_db`: ```python import requests url = "http://localhost:8000/api/v1/chat_db" data = { 'query': '查询销售额最高的产品', } response = requests.post(url, json=data) print(response.json()) ``` 这段代码向本地运行的DB-GPT服务器发送了一个POST请求,其中包含了要询问数据库的问题——即“查询销售额最高的产品”。返回的结果将会是以JSON格式封装的回答信息。 #### 数据库交互流程 在实际操作过程中,用户可以像对待其他大型语言模型一样,利用自然语言描述需求并与`chat_db`进行交流。例如,如果想要了解特定时间段内的销售趋势,则可以直接输入类似这样的语句:“告诉我去年第四季度每个月的产品A销量变化情况”。 #### Chat Excel 功能集成 除了传统的SQL查询方式之外,DB-GPT还提供了更加直观易用的功能Chat Excel。这一特性允许用户上传Excel表格文件,并基于这些数据集发起对话式的查询请求[^4]。具体步骤如下: - 文件上传至平台; - 选择对应的聊天模式(如针对Excel的数据分析); - 利用自然语言提问有关于所传入电子表格的内容。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

奔波儿灞爱霸波尔奔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值