P问题与NP问题

p问题

  • 可以在多项式时间内求解的问题

  • 存在一个确定的图灵机在多项式时间内终止并给出答案

  • 求解该问题的算法复杂度为N的多项式级

    • N K , log ⁡ N N^K,\log{N} NK,logN

NP问题

  • 可以在多项式时间内验证该问题的一个解

  • 存在一个确定的图灵机可以在多项式时间内终止并给出答案

  • NP问题与其他非P问题相比最有可能找到高效的算法

例如

  • 旅行商问题

  • 着色问题

  • 背包问题


NP-Complete问题

  • 是一类NP问题

  • 所有NP问题都可以在多项式时间内归纳到这个问题


NP-hard 问题

NP-hard问题是计算复杂性理论中的一个重要概念。NP-hard(非确定性多项式难)问题的正式定义是指那些至少与NP(非确定性多项式时间)中的最难问题一样难的问题。具体来说,NP-hard问题具有以下几个特性:

  1. 难度与NP问题相比不低:如果一个问题是NP-hard,那么解决这个问题的难度至少不低于解决任何NP问题的难度。换句话说,所有NP问题都可以在多项式时间内被归约到这个NP-hard问题上。

  2. 不一定是决策问题:与NP问题不同,NP-hard问题不一定是决策问题(即答案为“是”或“否”的问题)。NP-hard问题可以是优化问题或其他类型的问题。

  3. 不保证有多项式时间算法:对于NP-hard问题,目前没有已知的多项式时间算法来解决它们。这意味着这些问题在最坏情况下可能需要指数时间来解决。

  4. 包含NP完全问题:NP完全问题(NP-complete)是NP-hard问题的一个子集。一个问题被称为NP完全问题,如果它既在NP中,又是NP-hard的。

举例

一个经典的NP-hard问题是旅行商问题(Travelling Salesman Problem, TSP),其描述如下:给定一组城市以及每对城市之间的距离,找出一条经过每个城市且只经过一次的最短路径。这个问题是NP-hard的,因为找到最优解需要检查所有可能的路径组合,随着城市数量的增加,组合数目指数增长。

总结

NP-hard问题在计算机科学中是指那些至少与NP问题一样难的问题,可能非常耗时且难以找到有效的解。理解和研究NP-hard问题有助于科学家和工程师设计更好的算法和计算方法,以应对复杂的计算挑战。


NP-hard一定是NP问题吗

NP-hard问题不一定属于NP问题。为了更清楚地理解这一点,我们需要先理解NP问题的定义和NP-hard问题的定义。

NP问题

NP问题(Non-deterministic Polynomial time problems)是指可以在非确定性图灵机上用多项式时间验证其解的问题。简单来说,如果你给出一个可能的解,可以在多项式时间内验证该解是否正确。

NP-hard问题

NP-hard问题是指那些至少与NP中的最难问题一样难的问题。具体来说,如果一个问题是NP-hard,那么所有NP问题都可以在多项式时间内被归约(reduced)到这个NP-hard问题上。这意味着解决这个NP-hard问题的难度至少与解决任何NP问题的难度相当。

关键区别

  1. NP-hard不一定在NP中:NP-hard问题可以是任何问题,不管它是否在NP类中。NP-hard问题可能是决策问题,也可能是优化问题,或者其他类型的问题。它们不一定具备在多项式时间内验证解的特性。

  2. NP完全问题(NP-complete):NP完全问题是NP-hard问题的一个子集。一个问题如果既在NP中又是NP-hard,那么它就是NP完全问题。这意味着NP完全问题既可以在多项式时间内验证解(属于NP),又是NP-hard的(所有NP问题都可以归约到它)。

举例说明

  • NP完全问题:例如,SAT(可满足性问题)是一个经典的NP完全问题。它既在NP中(可以在多项式时间内验证一个给定的解是否满足公式),又是NP-hard的(所有其他NP问题都可以归约到SAT问题)。

  • NP-hard但不在NP中的问题:旅行商问题(TSP)的优化版本,即找到最短路径的具体长度,不是一个NP问题,因为给定一个长度值,没有已知的多项式时间算法来验证这个值是否为最短路径。因此,TSP优化问题是NP-hard的,但不在NP中。

总结

NP-hard问题的定义不要求它们在NP类中,因此NP-hard问题不一定是NP问题。只有当一个NP-hard问题同时也在NP中时,它才是NP完全问题。


多项式时间

在计算复杂性理论中,“多项式时间”指的是一个算法的运行时间是输入规模的某个多项式函数。具体来说,时间复杂度为(O(nk))(其中(k)是一个常数,(n)是输入的大小)被认为是多项式时间的,而时间复杂度为(O(nn))这种形式则不被认为是多项式时间的。

多项式时间的定义

多项式时间(Polynomial Time)是指一个算法的运行时间可以表示为输入大小的某个多项式函数。例如:

  • (O(n))

  • (O(n^2))

  • (O(n^3))

  • (O(n^k)),其中(k)是一个常数

这些都是多项式时间的例子。多项式时间算法的特点是当输入规模(n)增加时,算法的运行时间以相对较慢的速度增长。

超多项式时间

与多项式时间相对的是超多项式时间(Super-polynomial Time),例如:

  • (O(2^n))

  • (O(n!))

  • (O(n^n))

这些时间复杂度函数随着输入规模的增加而迅速增长,远超过多项式时间所允许的增长速率。

多项式时间在NP问题中的意义

在NP问题的定义中,要求的是存在一个非确定性图灵机,可以在多项式时间内验证给定解的正确性。这意味着验证过程的时间复杂度必须是多项式时间的,而不能是超多项式时间的。

总结

多项式时间不包括像(O(nn))这样的时间复杂度。只有那些时间复杂度为(O(nk))(其中(k)是常数)的算法才被认为是多项式时间算法。这一概念对于区分NP问题、NP-hard问题以及NP完全问题非常重要。


Hamiltonian Path

哈密尔顿路径(Hamiltonian Path)是图论中的一个重要概念。一个哈密尔顿路径是指在图中访问每个顶点恰好一次的路径。它的定义和性质如下:

定义

在一个给定的图中(无向图或有向图),哈密尔顿路径是一个通过每个顶点恰好一次的路径。若该路径能够形成一个回路,即路径的起点和终点是同一个顶点,那么这条路径被称为哈密尔顿回路(Hamiltonian Circuit 或 Hamiltonian Cycle)。

特性

  • 无重复顶点:哈密尔顿路径访问每个顶点恰好一次,且不会重复访问任何顶点。

  • 无重复边:路径中不允许重复使用图中的边。

举例

考虑一个简单的无向图:

A -- B -- C
|    |    |
D -- E -- F

在这个图中,A -> B -> C -> F -> E -> D是一个哈密尔顿路径,因为它访问了每个顶点恰好一次。如果存在一种路径能够从起点回到起点并且仍然访问每个顶点恰好一次,则为哈密尔顿回路。

哈密尔顿路径 vs. 欧拉路径

哈密尔顿路径与欧拉路径(Eulerian Path)之间有明显区别:

  • 欧拉路径:访问每条边恰好一次的路径。如果路径起点和终点相同则为欧拉回路。

  • 哈密尔顿路径:访问每个顶点恰好一次的路径。如果路径起点和终点相同则为哈密尔顿回路。

计算复杂性

确定一个图中是否存在哈密尔顿路径是一个NP完全问题。这意味着:

  • 在目前已知的情况下,没有多项式时间算法能够解决所有图的哈密尔顿路径问题。

  • 问题属于NP类,即如果给出一个可能的哈密尔顿路径,可以在多项式时间内验证其正确性。

  • 问题的难度和NP-hard问题的难度相当。

实际应用

哈密尔顿路径和哈密尔顿回路在很多实际问题中都有应用,例如:

  • 旅行商问题(TSP):TSP的目标是找到一条访问每个城市一次且总距离最短的回路,这实际上是哈密尔顿回路的一个优化问题。

  • 路径规划:在机器人路径规划和网络路由中,经常需要找到有效的路径,这些问题有时可以简化为哈密尔顿路径问题。

总结

哈密尔顿路径是图论中的重要概念,用于描述访问每个顶点恰好一次的路径。尽管其判定问题是NP完全的,但在许多实际应用中,理解和解决哈密尔顿路径问题具有重要意义。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值