YOLOv11改进缝合AirNet | 面对未知损坏图像的高效目标检测方法
YOLO系列模型一直在目标检测领域表现出色,随着YOLOv11的发布,许多新颖的优化方案不断涌现,尤其是在复杂场景中的检测效果。为了进一步提升YOLOv11在特殊场景中的表现,本文介绍了一种全新的图像修复技术——AirNet(All-in-one Image Restoration Network),该网络通过结合全能图像修复技术,特别是“对比基降解编码器”(CBDE)与“降解引导修复网络”(DGRN),帮助YOLOv11在处理复杂场景时具有更高的鲁棒性。
在本文中,我们研究了图像修复中的一个具有挑战性的问题,即如何开发一种全能方法,能够从各种未知的图像损坏类型和损坏程度中恢复图像。为此,我们提出了一种全能图像修复网络(AirNet),它由两个神经模块组成,分别是基于对比的退化编码器(CBDE)和退化引导修复网络(DGRN)。AirNet的主要优点有两个方面:首先,它是一种全能解决方案,能够在一个网络中恢复各种退化的图像;其次,AirNet不依赖于损坏类型和程度的先验知识,它仅使用观察到的退化图像进行推理。这两个优点使得AirNet在实际应用中具备了更好的灵活性和更高的经济性,因为在现实世界中,损坏的先验信息往往难以获得,而且退化情况会随着空间和时间变化。大量实验结果表明,所提出的方法在四个具有挑战性的数据集上超越了17个图像修复基线方法。