空气质量监测对于改善公共健康和环境保护至关重要。随着物联网(IoT)和人工智能(AI)技术的迅速发展,智能化的空气质量监测系统得到了广泛的应用。本篇文章将详细介绍如何从零开始搭建一个AIoT空气污染监测系统,重点包括数据采集、分析、预测以及可视化的过程。我们将使用MQ135传感器、MQTT协议、机器学习模型以及Web界面展示数据。
系统架构
该系统的架构分为几个关键模块:
- 数据采集:通过MQ135空气质量传感器采集环境中的空气质量数据。
- 数据传输:采用MQTT协议将数据传输到云端或本地服务器进行处理。
- 数据分析与预测:通过机器学习模型分析空气质量数据,预测未来的污染趋势。
- 数据可视化:通过Web界面展示实时空气质量数据和预测结果。
- 边缘计算:在本地对传感器数据进行初步处理,减轻服务器负担,提高响应速度。
1. 数据采集:MQ135传感器与ESP32
MQ135是一款广泛用于空气质量检测的传感器,能够检测二氧化碳(CO2)、氨气(NH3)、烟雾等气体。在本项目中,我们将使用ESP32作为控制单元,MQ135传感器用于获取空气中的有害气体浓度数据。通过Arduino IDE编写代码,获取传感器数据并通过MQTT协议发送到物联网平台。
1.1 硬件连接
- MQ135传感器连接到ESP32的模拟输入端口(例如GPI