随着城市化进程的加快,城市管理与公共安全的挑战日益增加。为了应对日益复杂的安全威胁,智慧城市的建设正在依托于物联网(IoT)和人工智能(AI)技术,通过无人机、机器人等智能硬件进行实时巡检与监控。在这个过程中,多模态AI技术,尤其是大模型在数据处理和异常事件识别中的应用,发挥了重要作用。本文将探讨如何通过无人机与机器人巡检中的多模态数据(视频、语音、文本)处理,实现异常事件的实时识别与城域级目标追踪,并探讨这一技术如何在智慧城市公共安全中得到落地应用。
1. 城市公共安全中的AIoT应用背景
1.1 城市公共安全的挑战
在现代城市中,公共安全问题日益复杂,包括交通安全、治安防控、灾害预警等。传统的监控手段依赖大量人工巡逻和视频监控,但随着城市规模的不断扩大,人工巡检和传统的监控手段已无法有效应对日益增多的监控区域和事件发生频率。此时,AIoT技术为解决这些问题提供了新的可能。
1.2 AIoT技术的引入
AIoT(人工智能物联网)结合了人工智能、传感器和云计算技术,能够让设备具备感知、决策和行动能力。通过在城市安全监控中引入AIoT,结合无人机、机器人等智能硬件,可以进行远程、实时的巡检和异常监测。特别是在多模态数据的处理下,系统能够对视频、语音、文本等不同形式的数据进行融合分析,提供更加精确和全面的决策支持。
2. 多模态大模型在无人机与机器人巡检中的应用
2.1 多模态数据概述
在城市公共安全领域,无人机和机器人等智能设备能够获取各种类型的数据,包括:
- 视频数据:通过高清摄像头或红外摄像头进行实时视频监控,用于捕捉目标物体、行为分析、