从头开始 学习数据集 单细胞分析 GSE184854 单细胞分群策略 单细胞分析策略 单细胞命名策略 亚群分析 亚群命名

以GSE184854_scRNA-seq_mouse_lung_ccr2为例子

1.根据标准流程 读入矩阵 去双细胞

2.以resolution分辨率为3 (细胞数为2w),划分亚群。(这里更推荐使用较小的分辨率,比如分辨率为2,先把大体上细胞类型鉴别出来,之后,再详细的优化,调整分辨率)。通过Disease.markers <- FindAllMarkers(All, min.pct = 0.25, logfc.threshold = 0.55, only.pos = T)查看每个亚群的marker基因,进而比较容易鉴别出细胞类型。
假如分成30群,
对每一群进行分析 查看其marker属于哪一类或者哪一亚类细胞。

开始可以先从整体上划分细胞:上皮类 髓系 淋巴系。或者上皮类 b细胞 t、nk细胞 成纤维细胞 单核-巨噬细胞 中性粒细胞 比如依靠Csf1r+ Cd68+来取出单核-巨噬细胞

在以上大群的基础上取出小群,进行详细分析。分析时候,给subset_Data设置不同的分辨率,看每一群的情况。 假如取出 单核-巨噬细胞 进行分析,目的是得到不同的巨噬细胞亚群。 1 先取出单核-巨噬细胞,然后标准步骤,降维,按照0.2分辨率进行聚类。
2.查看上述所得亚群的marker基因,给每个亚群命名。(这个时候,有的群是有比较明确的marker的,还有一些混杂的群,甚至可能出现上皮类、b细胞、成纤维细胞等等。记录这些亚群的位置,及其所属的细胞门类)
3.对步骤1的结果,进行放大分辨率,根据情况,取0.3甚至0.4的分辨率,重新查看、记录分群位置,并且与步骤2的结果进行对比。
4.重复上述三个步骤,最后,确定某个分辨率,取出自己想要分析的细胞。

**经验就是:**一定要查看不同分辨率下得到的结果,然后分别给不同分辨率下的亚群进行命名,最后并且对比着看,确定自己想要的分群结果。

分辨率太大的话,会导致出现非常多的没有意义的亚群;但是分辨率太小的话,就会让不同的细胞类型聚集到一个cluster,这样才取出某个群来详细分析的话,就会出现很多混杂细胞。

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

生信小博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值