以GSE184854_scRNA-seq_mouse_lung_ccr2为例子
1.根据标准流程 读入矩阵 去双细胞
2.以resolution分辨率为3 (细胞数为2w),划分亚群。(这里更推荐使用较小的分辨率,比如分辨率为2,先把大体上细胞类型鉴别出来,之后,再详细的优化,调整分辨率)。通过Disease.markers <- FindAllMarkers(All, min.pct = 0.25, logfc.threshold = 0.55, only.pos = T)查看每个亚群的marker基因,进而比较容易鉴别出细胞类型。
假如分成30群,
对每一群进行分析 查看其marker属于哪一类或者哪一亚类细胞。
开始可以先从整体上划分细胞:上皮类 髓系 淋巴系。或者上皮类 b细胞 t、nk细胞 成纤维细胞 单核-巨噬细胞 中性粒细胞 比如依靠Csf1r+ Cd68+来取出单核-巨噬细胞
在以上大群的基础上取出小群,进行详细分析。分析时候,给subset_Data设置不同的分辨率,看每一群的情况。 假如取出 单核-巨噬细胞 进行分析,目的是得到不同的巨噬细胞亚群。 1 先取出单核-巨噬细胞,然后标准步骤,降维,按照0.2分辨率进行聚类。
2.查看上述所得亚群的marker基因,给每个亚群命名。(这个时候,有的群是有比较明确的marker的,还有一些混杂的群,甚至可能出现上皮类、b细胞、成纤维细胞等等。记录这些亚群的位置,及其所属的细胞门类)
3.对步骤1的结果,进行放大分辨率,根据情况,取0.3甚至0.4的分辨率,重新查看、记录分群位置,并且与步骤2的结果进行对比。
4.重复上述三个步骤,最后,确定某个分辨率,取出自己想要分析的细胞。
**经验就是:**一定要查看不同分辨率下得到的结果,然后分别给不同分辨率下的亚群进行命名,最后并且对比着看,确定自己想要的分群结果。
分辨率太大的话,会导致出现非常多的没有意义的亚群;但是分辨率太小的话,就会让不同的细胞类型聚集到一个cluster,这样才取出某个群来详细分析的话,就会出现很多混杂细胞。