gsva gsea ssgsea单细胞 gaochao 使用GSVA方法计算某基因集在各个样本的表现

GSVA(基因集变异分析)是一种用于转录组数据的富集分析方法,不同于GSEA需要对比样本,GSVA对每个样本单独排序并标准化。本文介绍了GSVA的基本概念、核心函数gsva()及其参数,包括方法选择(如gsva, ssgsea, zscore, plage)、样本处理和基因集数据。通过模拟数据和真实数据(如白血病芯片数据)的应用实例,展示了GSVA与其他算法(如GSEA, PLAGE, ssGSEA)的比较,以及在TCGA数据上的应用。此外,还探讨了在RNA-seq数据上的表现。" 123792306,10720155,2022茶艺师高级考试指南:理论与实践,"['茶艺', '职业技能', '考试', '茶文化', '茶艺师培训']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

傻傻分不清!GSEA & GSVA有啥差别?史上最全教程来了! - 知乎 (zhihu.com)icon-default.png?t=N7T8https://zhuanlan.zhihu.com/p/506912398

文章发表于2013年,GSVA: gene set variation analysis for microarray and RNA-Seq data 同样是broad 研究生出品,其在2005年PNAS发表的gsea已经高达1.4万的引用了,不过这个GSVA才不到300。

GSVA

1.expr:表达矩阵,行对应基因,列对应样本;

2.gset.idx.list:用于GSVA分析的基因集,如MSigDb的gmt格式注释文件;

3.annotation:储存特定数据集的R包名称;

4.method:可选gsva, ssgsea , zscore, plage, 默认gsva;

5.kcdf:当method设置为gsva时,默认选项Gaussian (针对芯片表达矩阵,log CPMs, log RPKMs, log-TPM标准化后RNA-seq的表达矩阵), 可选Poisson (针对未标准化的RNA-seq的count表达矩阵) ;

6.abs.ranking:只在mx.diff=TRUE时使用 该参数,当abs.ranking= FALSE (默认)时,将使用修正的Kuiper统计量来计算富集得分,即极值的随机游走偏差。当 abs.ranking= TRUE时,将使用原始的Kuiper统计量,即使用极值的随机游走偏差和计算富集得分,该情况下,上调或下调的基因富集显著的基因集被认为是高度激活的;

7.min.sz和max.sz:结果基因集的最小和最大的基因数目,inf表示不设限制;

8.parallel.sz和parallel.type :线程数和集群架构的类型,保持默认即可。

9.mx.diff:mx.diff= FALSE时ES为0到最大值的距离,mx.diff= TRUE (默认值)时: ES为极值的随机游走偏差;

10.tau:method为gsva,默认tau=1,当method为ssgsea时,默认tau=0.25;

11.ssgsea:当method为ssgesa时,默认值TRUE,在进行ssgsea分析的最后一步进行标准化;

12.verbose:是否打印计算步骤信息,默认TRUE,打印信息。

8、全文总结

1、GSEAGSVA都是基于

对基因的某一个值的排序来进行富集分析

2、GSEA主要是用

case和control之间的差异倍数信噪比来进行排序

(一次处理两个样本)

3、GSVA则不需要做对比

而是对每个样本或单个细胞按基因的表达量进行单独排序

然后将富集分数的值做个标准化

再在不同的样本间对比

算法细节

算法本身就不是很好理解,并不强求一定要理解透彻,可以参考2005年的GSEA算法:

GSEA 算法 GSEA分析一文就够

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

生信小博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值