《强化学习》 模型无关方法

本文探讨了强化学习中的关键概念,包括Monte-Carlo与Temporal Difference方法、Q-learning算法、SARSA及其与Q-learning的区别。此外,还讨论了on-policy与off-policy两种策略的区别及其应用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

模型无关学习

这里写图片描述
这里写图片描述

Monte-Carlo & Temporal Difference; Q-learning

这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述

探索与利用

这里写图片描述

这里写图片描述

on-policy 和 off-policy

SARSA

这里写图片描述

Expected value SARSA

这里写图片描述

SARSA和Q-Learning对比

这里写图片描述

on-policy和off-policy对比

on-policyoff-policy
Agent 可以选择动作Agent 不能 选择动作
Most obvious setupLearning with exploration,playing without exploration
Agent always follows his own policyLearning from expert(expert is imperfect)
Learning from sessions(recorded data)
can’t learn from off-policycan learn from on-policy
SARSAQ-learning
more…Expected Value SARSA

经验回放

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值