【C语言练习】090. 使用C语言实现简单的机器学习算法

090. 使用C语言实现简单的机器学习算法

在C语言中实现一个简单的机器学习算法是一个很好的学习项目,可以帮助你理解机器学习的基本原理。这里将展示一个简单的线性回归算法的实现。线性回归是一种基本的监督学习算法,用于预测连续的输出值。

线性回归算法简介

线性回归的目标是找到一个线性模型 y=θ0​+θ1​x,使得模型的预测值与实际值之间的误差最小化。通常使用最小二乘法来求解最优的参数 θ0​ 和 θ1​。

算法步骤

  1. 数据准备:准备训练数据集,包括输入特征 x 和目标值 y。
  2. 初始化参数:初始化线性模型的参数 θ0​ 和 θ1​。
  3. 计算预测值:使用当前参数计算预测值 y^​=θ0​+θ1​x。
  4. 计算损失:计算预测值与实际值之间的误差,通常使用均方误差(MSE)。
  5. 更新参数:通过梯度下降法更新参数,以最小化损失函数。
  6. 迭代优化:重复步骤3-5,直到参数收敛或达到最大迭代次数。

示例代码:简单线性回归

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define NUM_DATA_POINTS 5
#define LEARNING_RATE 0.01
#define NUM_ITERATIONS 1000

// 训练数据
double x[NUM_DATA_POINTS] = {
   
   1, 2, 3, 4, 5};
double y[NUM_DATA_POINTS] = {
   
   2, 4, 6, 8, 10};

// 线性回归模型参数
double theta0 = 0.0;
double theta1 = 0.0;

// 计算预测值
double predict(double x) {
   
   
    return theta0 + theta1 * x;
}

// 计算损失函数(均方误差)
double computeCost() {
   
   
    double totalError = 0.0;
    for (int i = 0; i < NUM_DATA_POINTS; i++) {
   
   
        double error = predict(x[i]) - y[i];
        totalError += error * error;
    }
    return totalError / (2 * NUM_DATA_POINTS);
}

// 梯度下降法更新参数
void gradientDescent() {
   
   
    for (int iteration = 0; iteration < NUM_ITERATIONS; iteration++) {
   
   
        double theta0Gradient = 0.0;
        double theta1Gradient = 0.0;

        for (int i = 0; i < NUM_DATA_POINTS; i++) {
   
   
            double error = predict(x[i]) - y[i];
            theta0Gradient += error;
            theta1Gradient += error * x[i];
        }

        theta0Gradient /= NUM_DATA_POINTS;
        theta1Gradient /= NUM_DATA_POINTS;

        theta0 -= LEARNING_RATE * theta0Gradient;
        theta1 -= LEARNING_RATE * theta1Gradient;

        // 打印当前损失
        if (iteration % 100 == 0) {
   
   
            printf("Iteration %d, Cost: %.4f\n", iteration, computeCost());
        }
    }
}

int main()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值