090. 使用C语言实现简单的机器学习算法
090. 使用C语言实现简单的机器学习算法
在C语言中实现一个简单的机器学习算法是一个很好的学习项目,可以帮助你理解机器学习的基本原理。这里将展示一个简单的线性回归算法的实现。线性回归是一种基本的监督学习算法,用于预测连续的输出值。
线性回归算法简介
线性回归的目标是找到一个线性模型 y=θ0+θ1x,使得模型的预测值与实际值之间的误差最小化。通常使用最小二乘法来求解最优的参数 θ0 和 θ1。
算法步骤
- 数据准备:准备训练数据集,包括输入特征 x 和目标值 y。
- 初始化参数:初始化线性模型的参数 θ0 和 θ1。
- 计算预测值:使用当前参数计算预测值 y^=θ0+θ1x。
- 计算损失:计算预测值与实际值之间的误差,通常使用均方误差(MSE)。
- 更新参数:通过梯度下降法更新参数,以最小化损失函数。
- 迭代优化:重复步骤3-5,直到参数收敛或达到最大迭代次数。
示例代码:简单线性回归
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define NUM_DATA_POINTS 5
#define LEARNING_RATE 0.01
#define NUM_ITERATIONS 1000
// 训练数据
double x[NUM_DATA_POINTS] = {
1, 2, 3, 4, 5};
double y[NUM_DATA_POINTS] = {
2, 4, 6, 8, 10};
// 线性回归模型参数
double theta0 = 0.0;
double theta1 = 0.0;
// 计算预测值
double predict(double x) {
return theta0 + theta1 * x;
}
// 计算损失函数(均方误差)
double computeCost() {
double totalError = 0.0;
for (int i = 0; i < NUM_DATA_POINTS; i++) {
double error = predict(x[i]) - y[i];
totalError += error * error;
}
return totalError / (2 * NUM_DATA_POINTS);
}
// 梯度下降法更新参数
void gradientDescent() {
for (int iteration = 0; iteration < NUM_ITERATIONS; iteration++) {
double theta0Gradient = 0.0;
double theta1Gradient = 0.0;
for (int i = 0; i < NUM_DATA_POINTS; i++) {
double error = predict(x[i]) - y[i];
theta0Gradient += error;
theta1Gradient += error * x[i];
}
theta0Gradient /= NUM_DATA_POINTS;
theta1Gradient /= NUM_DATA_POINTS;
theta0 -= LEARNING_RATE * theta0Gradient;
theta1 -= LEARNING_RATE * theta1Gradient;
// 打印当前损失
if (iteration % 100 == 0) {
printf("Iteration %d, Cost: %.4f\n", iteration, computeCost());
}
}
}
int main()