自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(531)
  • 资源 (91)
  • 收藏
  • 关注

原创 IMX6ULL中断机制详解:从基础概念到实现原理

IMX6ULL中断机制详解:从基础概念到实现原理

2025-08-12 21:57:22 5

原创 数据库重建性能的优化方案

数据库重建性能的优化方案

2025-08-12 21:22:17 597

原创 查看CPU主频(时钟频率)可以通过以下多种方法实现

查看CPU主频(时钟频率)可以通过以下多种方法实现

2025-08-12 21:20:21 191

原创 在ARM系统中,`/proc/cpuinfo`文件用于展示处理器的详细信息

在ARM系统中,`/proc/cpuinfo`文件用于展示处理器的详细信息

2025-08-12 21:19:31 356

原创 ARM系统(或其他Linux系统)中,`top`命令用于实时监控系统资源使用情况

ARM系统(或其他Linux系统)中,`top`命令用于实时监控系统资源使用情况

2025-08-12 21:18:52 6

原创 SQL查询效率

SQL查询效率

2025-08-12 21:17:58 80

原创 SQL语句执行效率,这里提供以下分步优化方案

SQL语句执行效率,这里提供以下分步优化方案

2025-08-12 21:16:47 5

原创 IMX6ULL的Cortex-A7中断系统基于ARM GICv2架构

IMX6ULL的Cortex-A7中断系统基于ARM GICv2架构

2025-08-11 21:47:15 92

原创 IMX6ULL的PLL(锁相环)和时钟树是其时钟系统的核心

IMX6ULL的PLL(锁相环)和时钟树是其时钟系统的核心

2025-08-11 21:43:08 137

原创 BSP工程管理:核心要素与最佳实践

BSP工程管理:核心要素与最佳实践

2025-08-10 15:12:08 86

原创 IMX6ULL的SDK详解

IMX6ULL的SDK详解

2025-08-10 14:37:22 14

原创 NXP i.MX6ULL处理器的链接脚本

NXP i.MX6ULL处理器的链接脚本

2025-08-09 20:34:27 632

原创 链接脚本(Linker Script)

链接脚本(Linker Script)

2025-08-09 20:31:35 14

原创 IMX6ULL头部信息详解

IMX6ULL头部信息详解

2025-08-08 21:55:32 712

原创 i.MX 6ULL处理器中,**IVT(Image Vector Table)**、**Boot Data**和**DCD(Device Configuration Data)

i.MX 6ULL处理器中,**IVT(Image Vector Table)**、**Boot Data**和**DCD(Device Configuration Data)

2025-08-08 21:54:53 840

原创 SQLite C API

SQLite C API

2025-08-07 21:40:00 125

原创 在C语言中实现数据库行交换并生成新数据库,可以通过以下步骤实现(以SQLite为例)

在C语言中实现数据库行交换并生成新数据库,可以通过以下步骤实现(以SQLite为例

2025-08-07 21:38:52 292

原创 C语言中strtok和strtok_r

C语言中strtok和strtok_r

2025-08-06 21:12:19 505

原创 Linux中的UART-PL011详解

Linux中的UART-PL011详解

2025-08-06 21:11:09 985

原创 double类型变量进行四舍五入取整数

double类型变量进行四舍五入取整数

2025-08-06 21:10:25 283

原创 Cortex-A7的9种运行模式和寄存器组详解

Cortex-A7的9种运行模式和寄存器组详解

2025-08-05 22:15:03 639

原创 i.MX6ULL Cortex-A7处理器用汇编语言编写LED驱动的步骤详解

i.MX6ULL Cortex-A7处理器用汇编语言编写LED驱动的步骤详解

2025-08-05 22:14:13 442

原创 ARM MPcore 架构

ARM MPcore 架构

2025-08-05 22:13:11 497

原创 从基础到进阶讲解Linux下Cortex-A系列处理器的汇编语言

从基础到进阶讲解Linux下Cortex-A系列处理器的汇编语言

2025-08-04 22:16:14 435

原创 嵌入式系统中,BSP(Board Support Package,板级支持包)

嵌入式系统中,BSP(Board Support Package,板级支持包)

2025-08-04 21:35:46 386

原创 分布式计算在AI大模型训练中的效率提升研究(二)

分布式计算在AI大模型训练中的效率提升研究(二)

2025-08-03 20:49:46 24

原创 分布式计算在AI大模型训练中的效率提升研究(一)

分布式计算在AI大模型训练中的效率提升研究(一)

2025-08-03 20:48:53 24

原创 Cortex-A7、A8、A9 的核心区别

Cortex-A7、A8、A9 的核心区别

2025-08-03 20:31:46 256

原创 几个芯片的参数比较

几个芯片的参数比较

2025-08-03 20:29:27 263

原创 Linux系统中,socket接口、telnet接口、ssh接口、nfs和ftp

Linux系统中,socket接口、telnet接口、ssh接口、nfs和ftp

2025-08-02 21:32:21 485

原创 执行单元详解:ALU、FPU、AGU的功能与协同

执行单元详解:ALU、FPU、AGU的功能与协同

2025-08-02 15:29:26 881

原创 FOC算法实现高精度调速的详细步骤与代码示例

FOC算法实现高精度调速的详细步骤与代码示例

2025-08-02 15:26:49 51

原创 应用处理器(AP)、系统级芯片(SoC)与微控制器(MCU)的区别与联系

应用处理器(AP)、系统级芯片(SoC)与微控制器(MCU)的区别与联系

2025-08-02 15:24:59 694

原创 超标量执行与Cortex-A9的详细解析

超标量执行与Cortex-A9的详细解析

2025-08-02 15:17:47 875

原创 STM32与S5P4418的全面对比分析

STM32与S5P4418的全面对比分析

2025-08-02 15:09:30 792

原创 AGV小车全面解析

AGV小车全面解析

2025-08-02 15:07:05 788

原创 STM32不同系列型号的ROM和RAM大小对比

STM32不同系列型号的ROM和RAM大小对比

2025-08-02 15:05:54 287

原创 工业4.0:第四次工业革命的核心解析

工业4.0:第四次工业革命的核心解析

2025-08-02 15:02:14 505

原创 STM32中的RAM和ROM区别

STM32中的RAM和ROM区别

2025-08-02 14:58:57 344

原创 STM32内部总线与现场总线的分类及区别

STM32内部总线与现场总线的分类及区别

2025-08-02 14:55:39 605

量子遗传算法优化的认知无线电频谱分配.zip

量子遗传算法优化的认知无线电频谱分配 问题建模: 次用户数量:20,可用信道数量:10 信道增益矩阵:随机生成,表示不同用户在信道上的传输质量 干扰矩阵:表示信道间的干扰关系 量子遗传算法核心: 量子染色体表示:每个量子比特代表用户-信道分配概率(|0>未分配,|1>分配) 量子观测:将量子态坍缩为经典二进制解 适应度函数:考虑系统吞吐量、干扰约束和用户分配有效性 量子旋转门:向当前最优解学习,调整量子比特概率幅 量子变异:随机交换量子比特的概率幅

2025-07-11

蚁群算法优化光纤网络故障检测路径.zip

蚁群算法优化光纤网络故障检测路径.zip ### 算法说明: 1. **初始化**: - 随机生成光纤节点坐标 - 计算节点间距离矩阵 - 初始化信息素矩阵和启发式信息 2. **蚂蚁寻路**: - 每只蚂蚁随机选择起点 - 根据信息素和启发式信息选择下一节点(轮盘赌选择) - 记录每只蚂蚁的完整路径和总距离 3. **信息素更新**: - 所有路径上的信息素按挥发系数衰减 - 蚂蚁根据路径质量释放信息素(路径越短释放越多) 4. **最优路径更新**: - 记录每次迭代中的最短路径 - 更新全局最优路径

2025-07-10

改进模拟退火算法的5G大规模波束成形.zip

改进SA算法的5G Massive MIMO波束成形: 自适应温度调度: 动态调整冷却系数α(0.93~0.98) 根据收敛速度调整冷却速率 温度历史记录用于分析算法行为 记忆机制: 存储历史优质解(记忆库大小可调) 用于重启动时跳出局部最优 智能重启动策略: 检测收敛停滞(连续迭代改进<1%) 从记忆库随机选择重启点 重启后温度重置(指数衰减) 自适应邻域搜索: 动态调整扰动步长(余弦退火) 早期大范围探索,后期精细搜索 多目标优化: 联合优化多用户SINR 基于信干噪比(SINR)的评估函数

2025-07-09

智能算法优化的四旋翼飞行器抗扰动控制

智能算法优化的四旋翼飞行器抗扰动控制

2025-07-06

智能算法优化的高速列车自动驾驶曲线生成.zip

智能算法优化的高速列车自动驾驶曲线生成 算法说明 问题建模: 将线路离散化为等距分段(50米/段) 速度离散化为0.2m/s步长 考虑线路坡度(前5km上坡1%,后5km下坡0.5%) 目标函数:能耗 + 时间偏差惩罚 动态规划核心: 状态变量:位置 × 速度 状态转移:尝试所有可能的下一速度状态 约束处理: 加速度限制(-0.5~0.5 m/s²) 加加速度限制(±0.5 m/s³) 牵引功率限制 制动能力限制 线路限速 回溯法: 从终点回溯最优路径 记录最优速度曲线和加速度曲线 舒适度保障: 通过加速度和加加速度约束确保乘坐舒适性 加加速度计算基于加速度变化和时间间隔

2025-07-11

SA在三维装箱问题中的组合优化仿真.zip

SA在三维装箱问题中的组合优化仿真.zip 算法说明 问题表示: 容器:固定尺寸的立方体 箱子:不同尺寸的矩形箱子,每个箱子有6种可能的旋转方向 模拟退火核心: 初始解:随机生成箱子位置和方向 邻域操作:三种扰动方式(交换箱子位置、改变箱子方向、随机改变位置) 接受准则:Metropolis准则,允许一定概率接受劣解 冷却策略:指数冷却,温度逐渐降低 关键功能: 旋转处理:6种可能的箱子方向 碰撞检测:高效检查箱子重叠和边界约束 位置搜索:在已放置箱子的角落寻找可行位置 可视化:3D展示装箱结果 优化目标: 最大化已用容器体积(空间利用率)

2025-07-10

基于多算法融合的锂离子电池健康状态预测.zip

基于多算法融合的锂离子电池健康状态预测 数据生成: 模拟电池容量衰减曲线(指数衰减形式) 生成循环次数和电压降作为特征 添加高斯噪声模拟实际测量 三种基础算法: 线性回归:使用正规方程实现多元线性回归 多项式回归:扩展为二次特征进行回归 指数平滑:自适应选择最优平滑系数α 算法融合: 基于各算法在验证集上的RMSE计算融合权重 采用加权平均策略融合预测结果

2025-07-09

混合优化算法驱动的数字农业灌溉系统.zip

混合优化算法驱动的数字农业灌溉系统,matlab实现仿真 混合优化算法(结合遗传算法和模拟退火) 数字农业灌溉系统 优化算法实现: 遗传算法: 实数编码(7天灌溉量) 锦标赛选择 算术交叉 高斯变异 模拟退火: 以GA结果为初始解 自适应邻域搜索 指数降温策略 Metropolis接受准则

2025-07-08

融合深度学习的智能算法在气象预测中的研究.zip

融合深度学习的智能算法在气象预测中的研究.zip -梯度下降算法 前向传播:计算隐藏层激活(ReLU)和输出 损失计算:均方误差(MSE) 反向传播

2025-07-08

多目标进化算法优化的城市地下管网布局.zip

多目标进化算法优化的城市地下管网布局.zip

2025-07-07

基于GA的生物启发式神经网络结构搜索.zip

基于GA的生物启发式神经网络结构搜索,matlab实现仿真

2025-07-07

基于深度强化学习与GA的机器人抓取策略.zip

基于深度强化学习与GA的机器人抓取策略

2025-07-06

面向6G的智能反射面(IRS)配置优化算法.zip

面向6G的智能反射面(IRS)配置优化算法.zip

2025-07-06

53-GA优化PID控制器参数的液位控制系统仿真.zip

53-GA优化PID控制器参数的液位控制系统仿真.zip

2025-07-06

52-GA优化机器人动态避障路径的MATLAB仿真.zip

52-GA优化机器人动态避障路径的MATLAB仿真.zip 演示视频:https://mpbeta.csdn.net/mp_others/manage/video

2025-07-06

基于遗传算法的无人机三维路径规划仿真.zip

基于遗传算法的无人机三维路径规划仿真.zip

2025-07-05

MATLAB数字水印系统 - GUI实现 深入理解一种简单的数字水印嵌入与提取方法 - 空间域水印嵌入方法:最低有效位(LSB)替换法

深入理解一种简单的数字水印嵌入与提取方法 --- 空间域水印嵌入方法:最低有效位(LSB)替换法; MATLAB数字水印系统 - GUI实现 将上述代码复制到MATLAB编辑器中 保存为 watermark_gui.m 文件 在MATLAB命令窗口中输入 watermark_gui 运行程序 功能说明 1. 水印嵌入选项卡 选择载体图像:选择要嵌入水印的原始图像 选择水印图像:选择要嵌入的水印(自动调整为32x32二值图像) 嵌入水印:执行LSB水印嵌入算法 保存结果:保存含水印的图像 2. 水印提取选项卡 加载含水印图像:加载已嵌入水印的图像 提取水印:从图像中提取水印信息 保存提取结果:保存提取出的水印图像 3. 抗攻击测试选项卡 加载含水印图像:加载要测试的图像 选择攻击类型: 高斯噪声 椒盐噪声 JPEG压缩 中值滤波 高斯滤波 旋转攻击 缩放攻击 裁剪攻击 应用攻击:对图像应用选定的攻击 提取水印:从攻击后的图像中提取水印 评估指标:显示PSNR(图像质量)和NC(水印相似度)指标 4. 关于选项卡 显示系统信息和功能说明 技术特点 纯MATLAB脚本实现: 不依赖App Designer 使用传统GUI编程方法 兼容所有MATLAB版本(R2014b及以上) 完整的数字水印功能: LSB水印嵌入算法 水印提取功能 多种攻击模拟 评估指标计算(PSNR和NC) 用户友好界面: 选项卡式界面设计 图像预览功能 状态提示和错误处理 直观的操作流程 图像处理能力: 支持多种图像格式(JPG、PNG、BMP等) 自动图像转换(RGB转灰度) 水印图像自动二值化和调整大小

2025-07-05

电场计算+云图生成+HFSS数据导入适配.zip

电场计算+云图生成+HFSS数据导入适配.zip

2025-07-03

200kV高压直流电源主电路设计方案及MATLABSimulink实现方案.zip

200kV高压直流电源主电路设计方案及MATLABSimulink实现方案.zip

2025-07-03

异步延时采样技术实现PDM信号参数监测的深度学习系统.zip

异步延时采样技术实现PDM信号参数监测的深度学习系统.zip

2025-07-03

分布式计算在AI大模型训练中的效率提升研究.zip

分布式计算在AI大模型训练中的效率提升研究.zip matlab仿真,不使用toolbox进行仿真 仿真设计说明: 核心模型: 使用线性回归作为简化的大模型代表 均方误差损失函数和梯度下降优化器 数据并行分布式训练架构 分布式训练过程: 数据分割:将训练数据均匀分配到工作节点 本地计算:每个节点计算本地梯度 梯度聚合:中心节点收集并平均所有梯度 参数更新:更新全局模型参数 效率影响因素建模: 计算开销:与节点数据量成正比(compute_powers参数) 通信开销:与梯度大小和网络带宽相关(comm_speeds参数) 使用pause函数模拟真实延迟 对比场景: 场景1:高通信开销(0.1MB/s) + 弱计算能力(100μs/样本) 场景2:低通信开销(10MB/s) + 强计算能力(1μs/样本) 性能评估指标: 训练损失随时间的变化 不同工作节点数量的收敛速度 关键发现预期: 高通信开销场景: 增加节点数量会显著增加通信时间 分布式训练可能比单节点更慢 最优节点数量取决于通信/计算开销比 低通信开销场景: 增加节点数量可显著加速训练 接近线性的加速比(理想情况) 通信开销成为瓶颈前可扩展性良好 使用说明: 在MATLAB R2019a中运行脚本 结果将自动保存为distributed_results.mat 生成包含两个场景的对比图: 左图:高通信开销场景 右图:低通信开销场景

2025-08-03

基于AI的工业巡检机器人故障预测系统开发.zip

基于AI的工业巡检机器人故障预测系统开发.zip源码 代码说明 数据生成模块: 模拟工业机器人振动传感器数据 包含正常状态和渐进式故障状态 添加随机脉冲噪声模拟瞬时异常 特征提取模块: 时域特征:均值、标准差、峰值、RMS值、峭度 频域特征:主频成分、高频能量(20-50Hz) 使用滑动窗口处理(5秒窗口,1秒步长) 机器学习模型: 手动实现逻辑回归算法 使用梯度下降法优化参数 Sigmoid激活函数处理二分类问题 性能评估: 准确率、精确率、召回率、F1分数 可视化预测结果和概率输出 可视化模块: 传感器数据与故障区域标记 特征趋势变化图 预测结果与实际状态对比 模型特征权重分析 使用说明 直接运行脚本即可生成仿真结果

2025-07-29

机器人群体协作在物流场景中的应用模拟.zip

机器人群体协作在物流场景中的应用模拟.zip 仿真功能说明: 环境设置: 20×20网格仓库 随机生成的障碍物(15%密度) 多个货物和对应的目的地 机器人特性: 每个机器人独立决策 空闲时自动分配最近的未运送货物 使用A*算法进行路径规划 搬运货物时避开障碍物和其他机器人 协作机制: 机器人自动选择最近货物 搬运过程中货物随机器人移动 多个机器人可同时协作运输不同货物 可参考文章 原文链接:https://blog.csdn.net/a_zxswer/article/details/149695

2025-07-27

高阶OAM调制在5G移动通信中的应用及误码率分析.zip

高阶OAM调制在5G移动通信中的应用及误码率分析.zip(源码) 可参考理解代码:高阶OAM调制在5G移动通信中的应用及误码率分析(二) 本文提出了一种基于高阶OAM调制的5G通信系统误码率仿真方法。通过Matlab脚本实现了OAM模式复用、QPSK调制、AWGN信道传输和信号检测的完整流程。系统支持多模式并行传输,利用螺旋相位分布构建OAM信道矩阵,采用伪逆检测实现模式分离。仿真结果表明,OAM系统在高SNR区域性能接近理论QPSK曲线,验证了其在提升频谱效率方面的潜力。该方法为5G及未来通信系统的空间复用技术研究提供了有效的分析工具,展示了OAM技术在无线通信中的应用前景。

2025-07-24

GA优化的5G通信系统信道分配策略.zip

GA优化的5G通信系统信道分配策略.zip(源码)+说明文档 1. 系统模型 本实现模拟了一个多小区5G网络,包含以下关键组件: 网络拓扑: 7个六边形小区(1个中心+6个邻区) 每个小区随机分布10个用户 小区半径500米 信道模型: 采用3GPP UMa路径损耗模型 包含阴影衰落效应 载波频率3.5GHz 基站发射功率30dBm 资源分配: 15个正交信道 系统带宽100MHz 用户带宽动态分配 2. 遗传算法实现 遗传算法用于优化信道分配策略,最大化系统总容量: ———————————————— 版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。 原文链接:https://blog.csdn.net/a_zxswer/article/details/149460961

2025-07-19

江苏2025 全国大学生电子设计竞赛

江苏2025 全国大学生电子设计竞赛

2025-07-30

基于强化学习的机器人自主决策算法设计.zip

基于强化学习的机器人自主决策算法设计.zip 算法说明: 环境设置: 5×5网格世界 起点:(1,1),目标点:(5,5) 障碍物位置:(2,2)、(3,3)、(4,4) Q-learning核心参数: 学习率 (alpha):0.1 折扣因子 (gamma):0.9 探索率 (epsilon):从0.9指数衰减到0.1 训练轮次:1000次 奖励机制: 到达目标:+100 碰到障碍物:-10 每走一步:-0.1(鼓励最短路径) 状态表示: 状态 = (行索引-1)×列数 + 列索引 共25个状态(5×5网格) 动作空间: 上(1)、下(2)、左(3)、右(4) 输出可视化: 训练过程分析: 奖励变化曲线(滑动平均) 步数变化曲线(滑动平均) 网格世界路径规划结果 最终路径显示: 绿色:起点 蓝色:目标点 灰色:障碍物 红色:最优路径 Q表可视化: 状态价值函数热力图(平均Q值) 运行说明: 复制代码到MATLAB R2019a脚本文件 直接运行脚本 结果将显示在两张图中: 第一张:训练过程分析和路径规划 第二张:Q表热力图 该实现展示了强化学习在机器人路径规划中的应用,机器人能够学习避开障碍物并找到最优路径到达目标位置。

2025-07-28

复杂地形下机器人自主导航与SLAM算法优化.zip

复杂地形下机器人自主导航与SLAM算法优化.zip 关键修复点: 地标图形句柄处理: 使用数值数组 landmark_est_plots = zeros(1, num_landmarks) 替代 gobjects 使用 ishghandle() 检查图形句柄有效性(更兼容的检查方法) 使用 == 0 检查初始状态,避免占位符问题 轨迹初始化优化: 使用实际初始点初始化轨迹:plot(robot.x(1), robot.x(2), ...) 避免使用 plot(0,0,...) 创建空轨迹 角度归一化增强: 在避障导航中增加角度归一化,确保角度计算正确 使用 mod(angle + pi, 2*pi) - pi 统一处理所有角度 兼容性检查: 使用 ishghandle() 检查图形窗口状态(替代 isvalid) 使用更基础的图形函数确保 R2019a 兼容性 使用说明: 完整复制: 将此代码完整复制到 MATLAB 编辑器 保存为 .m 文件(例如 slam_simulation_final.m) 直接运行: 在 MATLAB R2019a 中直接运行脚本

2025-07-23

人形机器人关节柔性驱动技术的创新研究.zip

人形机器人关节柔性驱动技术的创新研究.zip--代码 创新点分析 能量效率分析: 脚本计算并比较了电机输入能量和负载耗散能量 直观展示柔性驱动系统的能量传递效率 弹性变形监测: 专门绘制了弹簧变形量曲线 可分析柔性元件在运动过程中的变形特性 抗冲击特性: 通过阶跃响应展示系统对冲击的缓冲能力 柔性结构有效减小了负载受到的冲击 全自主实现: 不使用任何工具箱 基于欧拉积分法实现动力学求解 完全自主编写的控制算法

2025-07-21

仿生四足机器人动态运动控制算法设计.zip

仿生四足机器人动态运动控制算法设计 结合博主的文章

2025-07-20

大语言模型的低成本训练与优化策略研究(如DeepSeek的模型压缩技术).zip

大语言模型的低成本训练与优化策略研究(如DeepSeek的模型压缩技术).zip 过程调试代码;可结合博主的文章 量化模型大小: 现在会显示合理的大小(接近原始模型大小) 实际应用中,量化权重可进一步压缩存储空间 学生模型准确率: 通过增加训练周期和改进梯度更新,准确率应有所提升 学习率衰减有助于稳定训练过程 向教师模型方向的引导应减少准确率下降 整体平衡: 剪枝模型:约30%压缩率,准确率基本保持不变 量化模型:模型大小合理,准确率基本保持不变 学生模型:约42%压缩率,准确率接近原始模型

2025-07-19

遗传算法在电力系统经济调度中的应用.zip

遗传算法在电力系统经济调度中的应用.zip 关键操作包括: 锦标赛选择:选择适应度高的个体作为父代 交叉操作:结合两个父代生成子代 变异操作:随机改变部分机组出力 约束修复:确保满足所有运行约束 精英保留:保留每代最优个体

2025-07-19

DE优化的主动噪声控制系统设计与仿真.zip

DE优化的主动噪声控制系统设计与仿真 系统特点 完全自主实现: 不依赖任何MATLAB工具箱 自定义FFT函数实现频谱分析 模块化设计: DE算法与噪声控制逻辑分离 适应度函数可独立修改 全面可视化: 时域信号对比 频域分析 算法收敛曲线 滤波器系数分布 性能量化: 计算噪声功率 降噪效果(dB) 收敛过程监控 仿真结果分析 运行脚本后,将生成以下分析图表:

2025-07-18

基于SA的基因调控网络结构学习算法.zip

算法特点 离散状态空间处理:直接操作离散的网络结构(添加/删除边) 正则化:L1正则化鼓励稀疏网络 高效扰动:三种扰动类型的平衡组合 鲁棒性:通过概率接受机制避免局部最优 可解释性:直接学习调控关系的存在和强度 参数调整建议 温度参数: 初始温度:影响初始接受率(通常设置为使初始接受率~0.8) 冷却速率:控制优化速度(0.8-0.99) 终止温度:决定停止条件 网络约束:

2025-07-17

数字孪生驱动下的智能制造系统实时优化.zip

系统模型: 5台机器,3种产品类型 每台机器具有效率、故障率、能耗等参数 订单随机生成,包含产品类型和到达时间 数字孪生体: 虚拟机器状态同步 历史性能数据记录(吞吐量、能耗、利用率) 优化参数配置 实时优化: 基于遗传算法的任务分配优化 每10秒执行一次调度优化 多目标优化:最小化完成时间、平衡机器负载、降低能耗 评估函数:

2025-07-15

基于元启发式算法的联邦学习客户端选择优化.zip

基于元启发式算法的联邦学习客户端选择优化 这个脚本实现了基于遗传算法的联邦学习客户端选择优化,主要包含以下组件: 客户端属性模拟: 计算能力、带宽、数据量、数据质量、电池电量和可靠性 这些属性随机生成,模拟真实环境中的客户端差异 遗传算法优化: 染色体表示:二进制向量表示客户端选择状态 适应度函数:综合考虑延迟、数据质量、电池电量和可靠性 选择操作:锦标赛选择策略 交叉操作:均匀交叉 变异操作:位翻转 精英保留:保留最优个体到下一代 联邦学习仿真:

2025-07-16

GA优化的智能交通信号灯配时仿真.zip

是一个使用遗传算法(GA)优化交通信号灯配时的MATLAB脚本实现。该脚本不使用任何工具箱,自行实现了遗传算法和交通流仿真模型

2025-07-14

混合优化算法在蛋白质结构预测中的应用.zip

混合优化算法在蛋白质结构预测中的应用 一个使用混合优化算法(遗传算法结合模拟退火)进行蛋白质结构预测的MATLAB仿真脚本。该脚本不使用任何工具箱,实现了简化版的蛋白质结构预测模型。

2025-07-14

优化算法在脑机接口特征选择中的应用研究.zip

运行说明: 脚本完整独立运行,无需任何工具箱 首先生成模拟EEG数据(约3秒) 特征提取阶段显示进度(约5-10秒) 优化算法运行显示迭代进度(GA和PSO各约1-2分钟) 最终显示特征选择结果和性能比较图 修复后的代码能正确处理特征维度,完整实现从数据生成到特征选择优化的全流程,适用于脑机接口特征选择研究。

2025-07-13

基于改进算法的无人机-车辆协同配送路径规划.zip

基于改进算法的无人机-车辆协同配送路径规划; 该脚本融合了蚁群算法(ACO)和遗传算法(GA)的优势,实现了高效的路径规划解决方案。

2025-07-12

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除