贝叶斯决策

周志华《机器学习》笔记

1.贝叶斯决策简介

贝叶斯决策是基于所有相关概率已知情况下,结合误判损失来选择最优的类别标记的一种决策方法。
假设有N种可能的标记, λij λ i j 是将一个真实标记为 ci c i 的样本误判为类别 cj c j 所产生的损失。

条件风险

R(ci|x)=j=1NλijP(cjx) R ( c i | x ) = ∑ j = 1 N λ i j P ( c j | x )
因为知道后验概率 P(ci|x) P ( c i | x ) ,所以给定一个样本,能够得到它被分为每个类别的概率。把所有误分的概率乘以损失,就得到了误分的代价,把每个样本误分为其他的类别的代价相加,就是这个条件风险。

贝叶斯准则

为最小化总体风险,只需在每个样本上选择那个能使条件风险最小的类别标记。
使用0\1损失函数作为误分类的风险,也就是说当分类正确时,损失为0,否则损失为1. 这时候条件风险的表达式将变得很简单,

R(ci|x)=j=1ijNP(cjx)=1P(ci|x) R ( c i | x ) = ∑ j = 1 , i ≠ j N P ( c j | x ) = 1 − P ( c i | x )

最小化分类错误率的贝叶斯最优化分类器

h(x)=argmaxcγP(c|x) h ∗ ( x ) = a r g m a x c ⊂ γ P ( c | x )
即对每一个样本x, 选择能够使后验概率 P(c|x) P ( c | x ) 的最大的类别标记。

2.如何获得后验概率?

基于有限的样本训练集尽可能地估算出后验概率 P(c|x) P ( c | x ) 。这里使用生成模型,先对联合概率分布 P(c,x) P ( c , x ) 建模,然后再求边缘分布,即 P(c|x) P ( c | x ) 。即

P(c|x)=P(c,x)P(x) P ( c | x ) = P ( c , x ) P ( x )
使用贝叶斯定理
P(c|x)=P(x|c)P(c)P(x) P ( c | x ) = P ( x | c ) P ( c ) P ( x )
其中 P(c) P ( c ) 是先验概率,类条件概率 P(x|c) P ( x | c ) , P(x) P ( x ) 为归一化因子。
先验概率可以通过各样本的类别出现的频率估算。
类条件概率 P(x|c) P ( x | c ) 使用极大似然估计求。

3.极大似然估计求类条件概率 P(x|c) P ( x | c )

基本思路:假定样本具有某种确定的概率分布形式,再基于样本对概率分布的参数进行估计。
按照类别把数据分成不同的子集,假设每个子集中的样本都是独立同分布的,写出似然函数:

P(Dc|θc)=P(x|θc) P ( D c | θ c ) = ∏ P ( x | θ c )
取对数求得对数似然函数:
L(θc)=logP(x|θc) L ( θ c ) = ∑ l o g P ( x | θ c )
然后求 θc θ c 一阶,二阶导数,令一阶导数值为0,若二阶导数小于0,则函数在这个 θ θ 出取得最大值。

4.朴素贝叶斯分类器

为什么叫朴素贝叶斯呢?因为类条件概率很难从有限的样本中直接估计得到,所以引入了一个属性条件独立性假设,对已知的类别,假设所有属性都是相互独立的。但是实际中,这些属性之间并不总是独立的,因此说他朴素(Naive)。
于是有 P(c|x)=P(x|c)P(c)P(x)=P(c)P(x)di=1P(xi|c) P ( c | x ) = P ( x | c ) P ( c ) P ( x ) = P ( c ) P ( x ) ∏ i = 1 d P ( x i | c ) , d为属性的个数, xi x i 为第i个属性上的取值。
朴素贝叶斯分类器的表达式:

eq2

比如西瓜数据集

编号,色泽,根蒂,敲声,纹理,脐部,触感,密度,含糖率,好瓜
1,青绿,蜷缩,浊响,清晰,凹陷,硬滑,0.697,0.46,是
2,乌黑,蜷缩,沉闷,清晰,凹陷,硬滑,0.774,0.376,是
3,乌黑,蜷缩,浊响,清晰,凹陷,硬滑,0.634,0.264,是
4,青绿,蜷缩,沉闷,清晰,凹陷,硬滑,0.608,0.318,是
5,浅白,蜷缩,浊响,清晰,凹陷,硬滑,0.556,0.215,是
6,青绿,稍蜷,浊响,清晰,稍凹,软粘,0.403,0.237,是
7,乌黑,稍蜷,浊响,稍糊,稍凹,软粘,0.481,0.149,是
8,乌黑,稍蜷,浊响,清晰,稍凹,硬滑,0.437,0.211,是
9,乌黑,稍蜷,沉闷,稍糊,稍凹,硬滑,0.666,0.091,否
10,青绿,硬挺,清脆,清晰,平坦,软粘,0.243,0.267,否
11,浅白,硬挺,清脆,模糊,平坦,硬滑,0.245,0.057,否
12,浅白,蜷缩,浊响,模糊,平坦,软粘,0.343,0.099,否
13,青绿,稍蜷,浊响,稍糊,凹陷,硬滑,0.639,0.161,否
14,浅白,稍蜷,沉闷,稍糊,凹陷,硬滑,0.657,0.198,否
15,乌黑,稍蜷,浊响,清晰,稍凹,软粘,0.36,0.37,否
16,浅白,蜷缩,浊响,模糊,平坦,硬滑,0.593,0.042,否
17,青绿,蜷缩,沉闷,稍糊,稍凹,硬滑,0.719,0.103,否

这里就假设属性色泽,根蒂,敲声,纹理,脐部,触感,密度,含糖率之间是相互独立的。

5. 朴素贝叶斯分类的例子

根据这些属性先把数据划分为一个个子集,然后为每个属性的取值估计条件概率 P(xi|c) P ( x i | c )
变量是有离散和连续之分的,对于离散型的变量,直接使用频率估计概率;
对于连续变量,常常假设其服从高斯分布,分别求第c类样本在第i个属相上取值的均值和方差 μc,i μ c , i , σ2c,i σ c , i 2 , 然后使用求类条件概率:

p(xi|c)=12πσc,iexp((xiμc,i)22σ2c,i) p ( x i | c ) = 1 2 π σ c , i e x p ( − ( x i − μ c , i ) 2 2 σ c , i 2 )

看周老师书上的一个例子去理解:


naive1
naive2
naive3

6.平滑

如果某个属性在训练集中没有出现过,那么其列条件概率为0,使用朴素贝叶斯估计时由于其中一项为0,导致最终结果为0。
使用拉普拉斯修正对其做平滑。
具体的做法是

P̂ =|Dc|+1|D|+N P ^ = | D c | + 1 | D | + N
P̂ (xi|c)=Dc,xi|+1|Dc|+Ni P ^ ( x i | c ) = | D c , x i | | + 1 | D c | + N i
N表示类别数, Ni N i 表示第 i i <script type="math/tex" id="MathJax-Element-31">i</script>个属性可能的取值数目。

周志华《机器学习》

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值