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Ridesharing and Pricing
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Ridesharing platforms

Examples of major platforms: Lyft, Uber, Sidecar
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This talk: Pricing and ridesharing

Ridesharing is somewhat unique among online platforms:

The platform sets the transaction price.

Our goal: Understand optimal pricing strategy.
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Our contributions

1. Amodel that combines:
▶ Strategic behavior of passengers and drivers
▶ Pricing behavior of the platform
▶ Queueing behavior of the system

2. What are the advantages of dynamic pricing over static
pricing?

▶ Static: Constant over several hour periods
▶ Dynamic: Pricing changes in response to system state;

"surge", "prime time"
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Related work

Our work sits at a nexus between several different lines of
research:
1. Matching queues (cf. [Adan and Weiss 2012])
2. Strategic queueingmodels (cf. [Naor 1969])
3. Two-sided platforms (cf. [Rochet and Tirole 2003, 2006])
4. Revenuemanagement (cf. [Talluri and van Ryzin 2006])
5. Large-scale matchingmarkets (cf. [Azevedo and Budish

2013])
6. Mean field equilibrium (cf. [Weintraub et al. 2008])
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Model
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Two types: Strategic and queueing

We need a strategic model that captures:
1. Platform pricing
2. Passenger incentives
3. Driver incentives

We need a queueingmodel that captures:
1. Driver time spent idling vs. driving
2. Ride requests blocked vs. served
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Preliminaries

1. Focus on a block of time (e.g., several hours)
over which arrival rates are roughly stable

2. Focus on a single region (e.g., a single city neighborhood)
▶ For technical simplicity
▶ Insights generalize to networks of regions

3. Focus on throughput: rate of completed rides
▶ For technical simplicity
▶ Same results for profit, when system is supply-limited
▶ Similar numerical results for welfare; theory ongoing
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Strategic modeling: Platform pricing

Platforms:
▶ Earn a (fixed) fraction γ of

every dollar spent (e.g., 20%)
▶ Need both drivers (supply)

and passengers (demand)
▶ Use pricing to align the two sides

Load-dependent pricing:
If # of available drivers = A, then price offered to ride = P(A)
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Strategic model: Platform pricing

In practice:
▶ Platforms charge a time-

and distance-dependent
base price

▶ Platformsmanipulate
price through a
multiplier

▶ Base price typically
is not varied

In our model:
price≡multiplier.
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Strategic model: Passengers

How do passengers enter?
▶ Passenger≡ one ride request
▶ Sees instantaneous ride price
▶ Enters if price< reservation value V
▶ V ∼ FV, i.i.d. across ride requests

µ0 = exogenous rate of "app opens".
µ = actual rate of rides requested.

Then when A available drivers present:

µ = µ0FV(P(A)).
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Strategic model: Drivers
How do drivers enter?

▶ Sensitive to expected earnings over the block
▶ Choose to enter if:

reservation earnings rate C ×
expected total time in system
< expected earnings while in system

▶ C ∼ FC, i.i.d. across drivers
Λ0 = exogenous rate of driver arrival.
λ = actual rate at which drivers enter.
Then:

λ = Λ0FC

(
expected earnings in system
expected time in system

)
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Queueing model

1. Drivers enter at rate λ.
2. When A drivers available,

ride requests arrive at rate µ(A).
3. If a driver is available, ride is served; else blocked.
4. Rides last exponential time, mean τ .
5. After ride completion:

▶ With probability qexit: Driver signs out
▶ With probability 1− qexit: Driver becomes available
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Queueing model: Steady state

Jackson network of two queues: M/M(n)/1 and M/M/∞

=⇒ product-form steady state distribution π.
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Putting it together: Equilibrium
Given pricing policy P(·),
system equilibrium is (λ, µ, π, ι, η) such that:
1. π is the steady state distribution, given λ and µ

2. η is the expected earnings per ride, given P(·) and π

3. ι is the expected idle time per ride, given π and λ

4. λ is the entry rate of drivers, given ι and η:

λ = Λ0FC

(
η

ι+ τ

)
5. µ(A) is the arrival rate of ride requests when A drivers

are available, given P(·):

µ = µ0FV(P(A)).
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Putting it together: Equilibrium

If price increases when number of available drivers
decreases:

▶ Equilibria always exist under appropriate
continuity of FC, FV.

▶ Equilibria are unique under reasonable conditions
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Large Market Limit
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The challenge

▶ To understand optimal pricing, we need to characterize
system equilibria.

▶ In particular, need sensitivity of equilibria to changes in
pricing policy.

▶ Our approach: asymptotics to simplify analysis.
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Large market asymptotics

Consider a sequence of systems indexed by n.
▶ In n'th system, exogenous arrival rates are nΛ0, nµ0.
▶ In n'th system, pricing policy is Pn(·).
▶ In each system, this gives rise to a system equilibrium.

We analyze pricing by looking at asymptotics of equilibria.
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Static Pricing
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What is static pricing?

Static pricing means: price policy is constant.
Let P(A) = p for all A.

Theorem
Let rn(p) denote the equilibrium rate of
completed rides in the n'th system. Then:

rn(p) → r̂(p) ≜ min{Λ0FC(γp/τ)/qexit, µ0FV(p)}.

Throughput =min { available supply, available demand }
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Static pricing: Illustration
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Static pricing: Interpretation

Note that at any price, queueing system is always stable:
▶ When supply < demand:

Drivers become fully saturated
▶ When supply > demand:

Drivers forecast high idle times and don't enter
Balance price pbal: Price where supply= demand

Corollary
The optimal static price is pbal.
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Dynamic pricing
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What is dynamic pricing?

Meant to capture "surge" (Uber)
and "prime time" (Lyft) pricing strategies.

We focus on threshold pricing:
▶ Threshold θ

▶ High price ph charged when
available drivers< θ

▶ Low price pℓ < ph charged when
available drivers> θ
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Dynamic pricing: Numerical investigation

▶ Fix one price,
and vary
the other price.

▶ Compare to
static pricing.

n = 1
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Dynamic pricing: Numerical investigation

▶ Fix one price,
and vary
the other price.

▶ Compare to
static pricing.

n = 10
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Dynamic pricing: Numerical investigation

▶ Fix one price,
and vary
the other price.

▶ Compare to
static pricing.

n = 100
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Dynamic pricing: Numerical investigation

▶ Fix one price,
and vary
the other price.

▶ Compare to
static pricing.

n = 1000
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Dynamic pricing: Numerical investigation

▶ Fix one price,
and vary
the other price.

▶ Compare to
static pricing.

n → ∞
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Optimal dynamic pricing

Theorem
Let r∗n be the rate of completed rides in the n'th system, using
the optimal static price.

Let r∗∗n be the rate of completed rides in the n'th system, using
the optimal threshold pricing strategy.

Then if FV has monotone hazard rate,

r∗n − r∗∗n
n → 0 as n → ∞.
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Optimal dynamic pricing

In other words:

In the fluid limit, no dynamic pricing policy
yields higher throughput than optimal static pricing.

This result is reminiscent of similar results in the classical
revenuemanagement literature (e.g., [Gallego and van Ryzin,
1994]).

The main differences arise due to the presence of a two sided
market.
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Proof sketch

Under threshold pricing:
▶ Drivers are sensitive to two quantities:

idle time, and price.
▶ Show that optimal θ∗n → ∞,

but chosen so that idle time→ 0 as n → ∞.
▶ In this limit, drivers are sensitive to

the average price per ride:

pavg = πhph + πℓpℓ,

where πh, πℓ are≈ probabilities of being
below or above θ, respectively.

▶ If pavg decreases, fewer drivers will enter.
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Proof sketch (cont'd)

We note that:
1. If pℓ < ph ≤ pbal, then pavg = ph.
2. If pbal ≤ pℓ < ph, then pavg = pℓ.
3. If pℓ < pbal < ph, then πℓ > 0, πh > 0.

In first two cases, de facto static pricing.
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Proof sketch (cont'd)

We explore the third case.
Suppose that we start with pℓ < ph = pbal (so pavg = ph).

Now increase ph:
▶ Before πℓ = 0, but now πℓ > 0, so some customers pay

pℓ; this lowers pavg.
▶ ph higher, so customers arriving when A < θ pay more;

this increases pavg.
When FV is MHR, we show that the first effect dominates the
second, so throughput falls.

32 / 39



Robustness
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The value of dynamic pricing

How does dynamic pricing help?
▶ When system parameters are known,

performance does not exceed static pricing.
▶ When system parameters are unknown,

dynamic pricing naturally "learns" them.
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Robustness: Illustration
What happens to static pricing in a demand shock?
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Robustness: Illustration
What happens to dynamic pricing in a demand shock?
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Robustness: Dynamic pricing

We can formally establish the observation in the previous
illustration:

▶ Suppose FC is logconcave, and µ
(1)
0 < µ

(2)
0 are fixed.

▶ Let p(1)
bal,n, p

(2)
bal,n = optimal static prices in the n'th system.

▶ Let r(1)n , r(2)n = optimal throughput in the n'th system.
▶ Suppose now the true µ0 ∈ [µ

(1)
0 , µ

(2)
0 ].

▶ Using both prices p(1)
bal,n, p

(2)
bal,n is robust:

▶ There exists a sequence of threshold pricing policies
with throughput at any such µ0 (in the fluid scaling)
≥ the linear interpolation of r(1)n and r(2)n .

(Same holds w.r.t.Λ0.)
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Conclusion
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Platform optimization

This work is an example of platform optimization:
Requires understanding both operations and economics.
Other topics under investigation:
1. Network modeling (multiple regions):

Our main insights generalize
2. Effect of pricing on aggregate welfare
3. Modeling driver heat maps
4. Fee structure: changing the percentage
5. Effect of changing the matching algorithm
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