Dynamic Pricing in Ridesharing Platforms A Queueing Approach

Sid Banerjee | Ramesh Johari | Carlos Riquelme Cornell | Stanford | Stanford rjohari@stanford.edu

With thanks to Chris Pouliot, Chris Sholley, and Lyft Data Science

20 November 2015

Ridesharing and Pricing

Ridesharing platforms

Examples of major platforms: Lyft, Uber, Sidecar

This talk: Pricing and ridesharing

Ridesharing is somewhat unique among online platforms:

The platform sets the transaction price.

Our goal: Understand optimal pricing strategy.

Our contributions

- 1. A model that combines:
 - Strategic behavior of passengers and drivers
 - Pricing behavior of the platform
 - Queueing behavior of the system
- 2. What are the advantages of *dynamic* pricing over *static* pricing?
 - Static: Constant over several hour periods
 - Dynamic: Pricing changes in response to system state; "surge", "prime time"

Related work

Our work sits at a nexus between several different lines of research:

- 1. Matching queues (cf. [Adan and Weiss 2012])
- 2. Strategic queueing models (cf. [Naor 1969])
- 3. Two-sided platforms (cf. [Rochet and Tirole 2003, 2006])
- 4. Revenue management (cf. [Talluri and van Ryzin 2006])
- **5.** *Large-scale matching markets* (cf. [Azevedo and Budish 2013])
- 6. Mean field equilibrium (cf. [Weintraub et al. 2008])

Model

Two types: Strategic and queueing

We need a strategic model that captures:

- 1. Platform pricing
- 2. Passenger incentives
- 3. Driver incentives

We need a *queueing model* that captures:

- 1. Driver time spent idling vs. driving
- 2. Ride requests blocked vs. served

Preliminaries

- 1. Focus on a *block* of time (e.g., several hours) over which arrival rates are roughly stable
- 2. Focus on a single region (e.g., a single city neighborhood)
 - For technical simplicity
 - Insights generalize to networks of regions
- 3. Focus on throughput: rate of completed rides
 - For technical simplicity
 - Same results for profit, when system is supply-limited
 - Similar numerical results for welfare; theory ongoing

Strategic modeling: Platform pricing

Platforms:

- Earn a (fixed) fraction γ of every dollar spent (e.g., 20%)
- Need *both* drivers (supply) and passengers (demand)
- Use pricing to align the two sides

Load-dependent pricing:

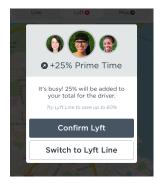
If # of available drivers = A, then price offered to ride = P(A)

Strategic model: Platform pricing

In practice:

- Platforms charge a timeand distance-dependent base price
- Platforms manipulate price through a multiplier
- Base price typically is not varied

In our model: $price \equiv multiplier.$



Strategic model: Passengers

How do passengers enter?

- Passenger ≡ one ride request
- Sees instantaneous ride price
- ► Enters if price < reservation value V
- $V \sim F_V$, i.i.d. across ride requests

$$\mu_0 =$$
exogenous rate of "app opens".
 $\mu =$ actual rate of rides requested.

Then when A available drivers present:

$$\mu = \mu_0 \overline{\mathsf{F}}_V(P(A)).$$

Strategic model: Drivers

How do drivers enter?

- Sensitive to *expected earnings over the block*
- Choose to enter if: reservation earnings rate C× expected total time in system
 < expected earnings while in system
- ► *C* ~ F_{*C*}, i.i.d. across drivers
- $\Lambda_0 = {\rm exogenous \ rate \ of \ driver \ arrival.} \\ \lambda = {\rm actual \ rate \ at \ which \ drivers \ enter.} \\ {\rm Then:}$

$$\lambda = \Lambda_0 \mathsf{F}_C \left(\frac{\mathsf{expected earnings in system}}{\mathsf{expected time in system}} \right)$$

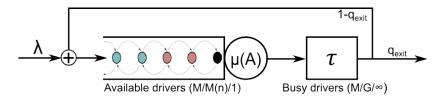
Queueing model

- **1.** Drivers enter at rate λ .
- 2. When A drivers available, ride requests arrive at rate $\mu(A)$.
- 3. If a driver is available, ride is *served*; else *blocked*.
- 4. Rides last exponential time, mean τ .
- 5. After ride completion:
 - With probability q_{exit}: Driver signs out
 - With probability $1 q_{exit}$: Driver becomes available

Queueing model: Steady state

Jackson network of two queues: M/M(n)/1 and $M/M/\infty$

 \implies product-form steady state distribution π .



Putting it together: Equilibrium

Given pricing policy $P(\cdot)$,

system equilibrium is $(\lambda, \mu, \pi, \iota, \eta)$ such that:

- **1.** π is the steady state distribution, given λ and μ
- 2. η is the expected earnings per ride, given $P(\cdot)$ and π
- 3. ι is the expected idle time per ride, given π and λ
- **4.** λ is the entry rate of drivers, given ι and η :

$$\lambda = \Lambda_0 \mathsf{F}_C \left(\frac{\eta}{\iota + \tau} \right)$$

5. $\mu(A)$ is the arrival rate of ride requests when A drivers are available, given $P(\cdot)$:

$$\mu = \mu_0 \overline{\mathsf{F}}_V(P(A)).$$

Putting it together: Equilibrium

If price increases when number of available drivers decreases:

- Equilibria always exist under appropriate continuity of F_C, F_V.
- Equilibria are unique under reasonable conditions

Large Market Limit

The challenge

- To understand optimal pricing, we need to characterize system equilibria.
- In particular, need sensitivity of equilibria to changes in pricing policy.
- Our approach: *asymptotics* to simplify analysis.

Large market asymptotics

Consider a sequence of systems indexed by *n*.

- In *n*'th system, exogenous arrival rates are $n\Lambda_0$, $n\mu_0$.
- In *n*'th system, pricing policy is $P_n(\cdot)$.
- ► In each system, this gives rise to a system equilibrium.

We analyze pricing by looking at asymptotics of equilibria.

Static Pricing

What is static pricing?

Static pricing means: price policy is constant. Let P(A) = p for all A.

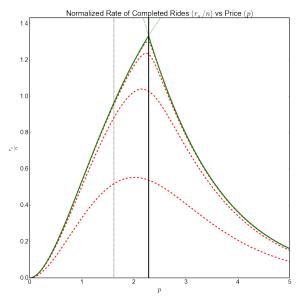
Theorem

Let $r_n(p)$ denote the equilibrium rate of completed rides in the n'th system. Then:

$$r_n(p) \to \hat{r}(p) \triangleq \min\{\Lambda_0 \mathsf{F}_C(\gamma p/\tau)/q_{\text{exit}}, \mu_0 \overline{\mathsf{F}}_V(p)\}.$$

Throughput = min { available supply, available demand }

Static pricing: Illustration



Static pricing: Interpretation

Note that at *any price*, queueing system is always stable:

- When supply < demand: Drivers become fully saturated
- When supply > demand: Drivers forecast high idle times and don't enter

Balance price p_{bal} : Price where supply = demand

Corollary

The optimal static price is p_{bal} .

Dynamic pricing

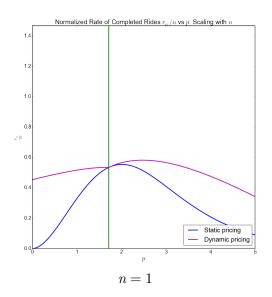
What is dynamic pricing?

Meant to capture "surge" (Uber) and "prime time" (Lyft) pricing strategies.

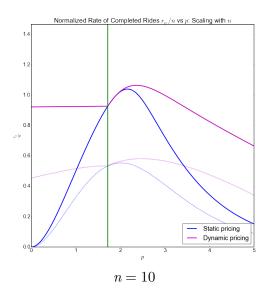
We focus on threshold pricing:

- Threshold θ
- High price *p_h* charged when available drivers < θ
- Low price p_ℓ < p_h charged when available drivers > θ

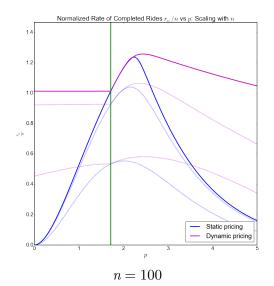
- Fix one price, and vary the other price.
- Compare to static pricing.



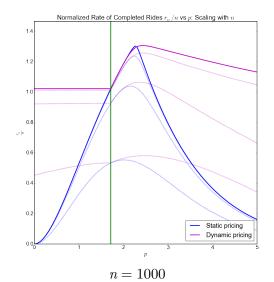
- Fix one price, and vary the other price.
- Compare to static pricing.



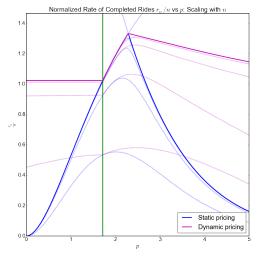
- Fix one price, and vary the other price.
- Compare to static pricing.



- Fix one price, and vary the other price.
- Compare to static pricing.

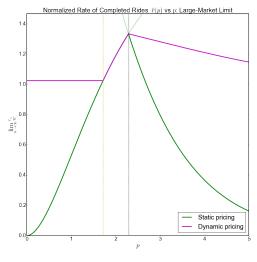


- Fix one price, and vary the other price.
- Compare to static pricing.



 $n \to \infty$

- Fix one price, and vary the other price.
- Compare to static pricing.



 $n \to \infty$

Optimal dynamic pricing

Theorem

Let r_n^* be the rate of completed rides in the *n*'th system, using the optimal static price.

Let r_n^{**} be the rate of completed rides in the *n*'th system, using the optimal threshold pricing strategy.

Then if F_V has monotone hazard rate,

$$\frac{r_n^* - r_n^{**}}{n} \to 0 \text{ as } n \to \infty.$$

Optimal dynamic pricing

In other words:

In the fluid limit, no dynamic pricing policy yields higher throughput than optimal static pricing.

Optimal dynamic pricing

In other words:

In the fluid limit, no dynamic pricing policy yields higher throughput than optimal static pricing.

This result is reminiscent of similar results in the classical revenue management literature (e.g., [Gallego and van Ryzin, 1994]).

The main differences arise due to the presence of a two sided market.

Proof sketch

Under threshold pricing:

- Drivers are sensitive to *two* quantities: idle time, and price.
- ▶ Show that optimal $\theta_n^* \to \infty$, but chosen so that idle time $\to 0$ as $n \to \infty$.
- In this limit, drivers are sensitive to the *average* price per ride:

$$p_{\mathsf{avg}} = \pi_h p_h + \pi_\ell p_\ell,$$

where π_h, π_ℓ are \approx probabilities of being below or above θ , respectively.

► If *p*_{avg} decreases, fewer drivers will enter.

Proof sketch (cont'd)

We note that:

- 1. If $p_{\ell} < p_h \leq p_{\mathsf{bal}}$, then $p_{\mathsf{avg}} = p_h$.
- **2.** If $p_{\mathsf{bal}} \leq p_{\ell} < p_h$, then $p_{\mathsf{avg}} = p_{\ell}$.
- **3.** If $p_{\ell} < p_{\mathsf{bal}} < p_h$, then $\pi_{\ell} > 0, \pi_h > 0$.

In first two cases, *de facto* static pricing.

Proof sketch (cont'd)

We explore the third case.

Suppose that we start with $p_\ell < p_h = p_{\sf bal}$ (so $p_{\sf avg} = p_h$).

Now increase p_h :

- ▶ Before π_ℓ = 0, but now π_ℓ > 0, so some customers pay p_ℓ; this lowers p_{avg}.
- *p_h* higher, so customers arriving when *A* < θ pay more; this increases *p*_{avg}.

When F_V is MHR, we show that the first effect dominates the second, so throughput falls.

Robustness

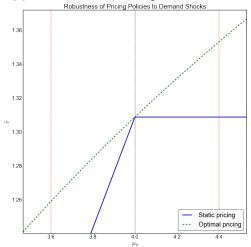
The value of dynamic pricing

How does dynamic pricing help?

- When system parameters are known, performance does not exceed static pricing.
- When system parameters are unknown, dynamic pricing naturally "learns" them.

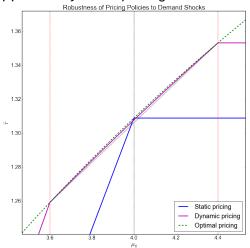
Robustness: Illustration

What happens to static pricing in a demand shock?



Robustness: Illustration

What happens to dynamic pricing in a demand shock?



Robustness: Dynamic pricing

We can formally establish the observation in the previous illustration:

- Suppose F_C is logconcave, and $\mu_0^{(1)} < \mu_0^{(2)}$ are fixed.
- ▶ Let $p_{bal,n}^{(1)}$, $p_{bal,n}^{(2)}$ = optimal static prices in the *n*'th system.
- Let $r_n^{(1)}, r_n^{(2)} =$ optimal throughput in the *n*'th system.
- Suppose now the true $\mu_0 \in [\mu_0^{(1)}, \mu_0^{(2)}]$.
- Using both prices $p_{\mathsf{bal},n}^{(1)}, p_{\mathsf{bal},n}^{(2)}$ is robust:
 - There exists a sequence of threshold pricing policies with throughput at any such μ_0 (in the fluid scaling) \geq the linear interpolation of $r_n^{(1)}$ and $r_n^{(2)}$.

(Same holds w.r.t. Λ_0 .)

Conclusion

Platform optimization

This work is an example of *platform optimization*: Requires understanding *both* operations and economics. Other topics under investigation:

- Network modeling (multiple regions): Our main insights generalize
- 2. Effect of pricing on aggregate welfare
- 3. Modeling driver heat maps
- 4. Fee structure: changing the percentage
- **5.** Effect of changing the matching algorithm