pytorch出错: Attempting to deserialize object on a CUDA device but torch.cuda.is_available() is False

本文详细介绍了在CPU环境下运行原本为CUDA环境设计的PyTorch模型时可能遇到的两个常见错误及其解决方案。首先,针对尝试在CUDA设备上反序列化对象但torch.cuda.is_available()为False的错误,通过在torch.load函数中添加map_location参数指向CPU来解决。其次,对于Torch未使用CUDA编译的错误,文章建议移除所有.cuda()调用,以确保模型在CPU上正确运行。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

错误一:RuntimeError: Attempting to deserialize object on a CUDA device but torch.cuda.is_available() is False. If you are running on a CPU-only machine, please use torch.load with map_location=torch.device(‘cpu’) to map your storages to the CPU.

解决方法:在torch.load(xxx)后面添加map_location=torch.device('cpu')或者map_location='cpu'

示例
在这里插入图片描述
在这里插入图片描述

state_dict = torch.load(self.model_path)

在torch.load括号后面添加map_location=torch.device('cpu')或者map_location='cpu'

在这里修改如下:

state_dict = torch.load(self.model_path,map_location='cpu')
或
state_dict = torch.load(self.model_path,map_location='cpu')

修改之后,运行可能会出现以下错误:

错误二:AssertionError: Torch not compiled with CUDA enabled

解决方法:去掉所有的.cuda()

示例
在这里插入图片描述
点击蓝色部分字体,进入代码,定位到出错位置,可以看到这边转换为cuda运行,将其注释掉即可
在这里插入图片描述
注释掉,并保存
在这里插入图片描述
继续运行程序,找出.cuda(),并将其去掉
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

六五酥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值