安全帽佩戴识别检测系统算法

安全帽佩戴识别检测系统算法基于YOLOv3 的主干网络为 Darkent-53,其中,安全帽佩戴识别检测系统算法包含53个卷积层和5个残差块。 每个残差块包含残差单元,而残差单元由DBL组件组成,DBL 组件中包括卷积、批量归一化和 Leaky reiu激活函数。 残差单元由DBL通过相加而 成,残差块由DBL和残差单元构成,其中,残差块借 鉴ResNet的思想,增强了特征融合能力。 YOLOv3 通过改变卷积核的步长来实现张量的尺度变换,输 出 3 个不同大小的尺度。


NAS 算法是自动机器学习领域的热点算法之 一,可通过数据特征自动找到合适的神经网络架 构 。该算法的原理是光定义搜索空间;然后,通 过搜索策略找出候选网络架构,对候选网络进行评 估;最后,根据评估结果进行下一轮的搜索。由于 NAS 的根本思想是探索各种潜在的解决方案,搜 索空间越大,需要训练与评估的架构就越多,消耗 的资源与时间就越多。因此,搜索空间的设定将直 接影响计算开销。目前 NAS 的主流设计方法为先 基于单元 (cell) 的架构进行设计,再将单元堆叠 在主干网络上,构成整体网络架构,并由此限制搜 索空间大小。
 

import os
from torch.utils.data import Dataset
from utils import *
from torchvision import transforms
transform = transforms.Compose([

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值