计算机视觉 特征检测与匹配 线和消失点

本文探讨了计算机视觉中的线条检测和匹配技术,包括逐次逼近、霍夫变换及其应用。霍夫变换通过边缘点投票检测线段,RANSAC算法则通过随机抽样来确定线性结构。此外,文章还介绍了消失点的概念,检测消失点对于理解3D平行线在图像中的投影至关重要,这对于建筑建模和相机姿态估计等应用非常有用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        虽然边缘和一般曲线适合描述自然物体的轮廓,但人造世界充满了直线。 检测和匹配这些线条可用于各种应用,包括建筑建模、城市环境中的姿态估计以及打印文档布局的分析。

        从一些将曲线近似为分段线性折线的算法开始到霍夫变换,它可以用来将边缘分组为线段,甚至跨越间隙和遮挡。 最后了解如何将具有共同消失点的 3D 线组合在一起。 这些消失点可用于校准相机并确定其相对于正面体场景的方向。

1、逐次逼近(Successive approximation)

        将曲线描述为一系列 2D 位置 x_i = x(s_i) 提供了适合匹配和进一步处理的一般表示。然而,在许多应用中,最好用更简单的表示来近似这种曲线,例如,作为分段线性折线或作为 B-spline 曲线。

        多年来已经开发了许多技术来执行这种近似,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坐望云起

如果觉得有用,请不吝打赏

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值