机器学习笔记 - LoRA:大型语言模型的低秩适应

本文介绍了LoRA,一种由微软开发的低秩自适应方法,用于减少大型语言模型(LLM)微调过程中的计算成本。LoRA通过学习秩分解矩阵对,对原始权重进行微调,从而降低可训练参数的数量,减轻灾难性遗忘,并作为一种强大的正则化器。文章还讨论了LoRA的局限性和潜在的替代方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、简述

1、模型微调

        随着大型语言模型 (LLM) 的规模增加到数千亿,对这些模型进行微调成为一项挑战。传统上,要微调模型,我们需要更新所有模型参数。这也称为完全微调 (FFT) 。下图详细概述了此方法的工作原理。

        完全微调FFT 的计算成本和资源需求很大,因为更新每个参数都需要大量的处理和内存。其次,使用像 FFT 这样的方法,存在灾难性遗忘的风险,即模型在过度学习新数据时会忘记以前学到的信息。

        于是为应对这一情况,出现了一系列称为参数高效微调 (PEFT)的方法。PEFT 仅需修改一小部分参数(在某些任务中甚至为 1%)即可达到与 FFT 相近的准确度。使用 PEFT,微调将需要更少的计算和时间,并降低过度拟合的风险。

2、LoRA

        一种流行的 PEFT 方法就是LoRA,大型语言模型的低秩自适应 ( LoRA ) 由微软开发,通过学习秩分解矩阵对并冻结原始权重来减少可训练参数的数量。

  &

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坐望云起

如果觉得有用,请不吝打赏

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值